
## Controlli Automatici Esercitazione nr. 2 Gruppo Nr. |a|=1

|    | Cognome | Nome |
|----|---------|------|
| 1) |         |      |
| 2) |         |      |
| 3) |         |      |
| 4) |         |      |

Si consideri il sistema retroazionato riportato a fianco. Facendo riferimento alle funzioni  $G_i(s)$ riportate di seguito, si sostituisca ad a il valore assegnato e si risponda alle seguenti domande.



$$G_1(s) = \frac{10(s+0.1)(s+100)}{(s^2+2s+4)(s+a^2)}$$

$$G_2(s) = \frac{2(s+0.2)(s-50)}{s(s+a)^2}$$

$$G_3(s) = \frac{5(s + \frac{a}{10})(s^2 - 2s + 25)}{s^2(s + 100)}$$

1a) Posto K=1, calcolare l'errore a regime  $e_i(\infty)$  per ingresso a gradino  $r(t)=3\,u(t)$ . Si utilizzi la relazione  $e_i(\infty) = r(\infty) - y_i(\infty)$  dove  $y_i(\infty)$  è calcolato applicando il comando "tresp" alla funzione  $Y(s) = r(\infty)$  $\frac{KG_i(s)}{1+KG_i(s)}R(s)$ . Si verifichi che gli stessi risultati si possono ottenere utilizzando la formula  $e(\infty)=\frac{R_0}{1+K_n}$ .

$$e_1(\infty) = \frac{3 a^2}{a^2 + 25}$$

$$e_2(\infty) = ?$$
 (il sistema è instabile)

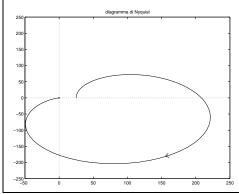
$$e_3(\infty)=0$$

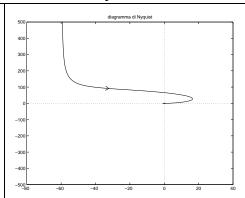
1b) Calcolare l'errore a regime  $e_i(\infty)$  per ingresso a rampa r(t) = t. Si utilizzi la formula  $e(\infty) = \frac{R_0}{K_{\pi}}$ .

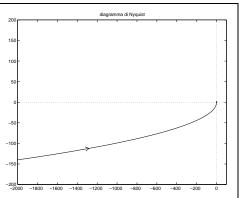
$$e_1(\infty) = \infty$$

$$e_2(\infty) = ?$$
 (il sistema è instabile)

$$e_3(\infty) = 0$$


1c) Calcolare l'errore a regime  $e_i(\infty)$  per ingresso a parabola  $r(t) = t^2$ . Si utilizzi la formula  $e(\infty) = \frac{R_0}{K_a}$ .


$$e_1(\infty) = \infty$$


$$e_2(\infty)=?$$
 (il sistema è instabile)

$$e_3(\infty) = \frac{16}{a}$$

2a) Disegnare qualitativamente il diagramma polare completo delle funzioni  $G_i(s)$  a partire dal diagramma di Nyquist ottenuto utilizzando con il comando "fresp".







2b) Determinare se, in base al criterio di Nyquist, il sistema retroazionato  $G_{0i}(s)$  è stabile per K=1.

 $G_{01}(s)$  è stabile:

no  $\square$ ;

si ໔;

 $G_{02}(s)$  è stabile : no  $\square$ ;

 $si \square;$  $G_{03}(s)$  è stabile:

si 🗹;

2c) Determinare, sul diagramma di Nyquist, il margine di fase  $M_{Fi}$  e il margine di ampiezza  $M_{Ai}$  della funzione  $G_i(s)$ . Verificare i risultati ottenuti tramite l'opzione 3 del comando "fresp".

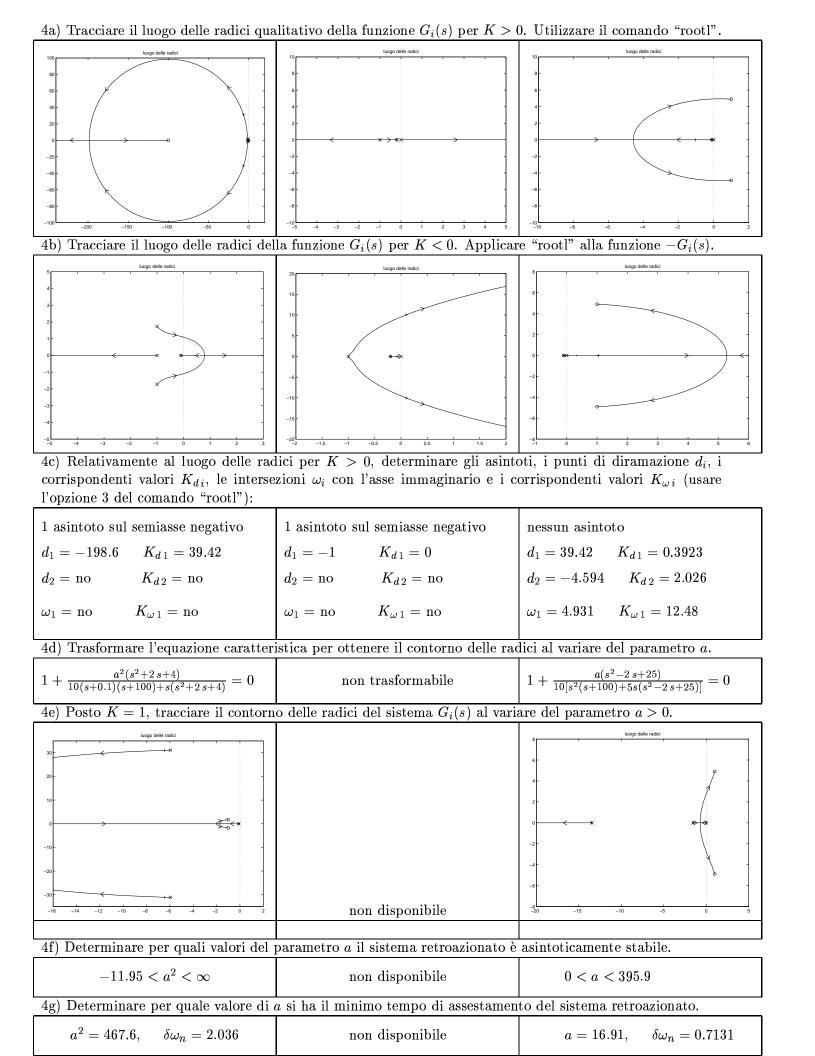
 $M_{F1} = 23.11^{o}$ 

 $M_{F2} = -181.1^{o}$ 

 $M_{F3} = 78.95^{o}$ 

 $M_{A1} = \text{non determinabile}$ 

 $M_{A2} = \text{non determinabile}$ 


 $M_{A3} = 12.48$ 

3) Utilizzando il criterio di Routh (utilizzare il comando "routh"), determinare per quali valori di K il sistema retroazionato è stabile.

 $-0.004803 < K < \infty$ 

-0.9007 < K < 0

0 < K < 12.48

