Modeling of Multi Open Phase Fault Condition of Multi-phase Permanent Magnet Synchronous Motors

Marco Fei
Information Engineering Department
University of Modena e Reggio Emilia
Via Vignolese 905, 41100 Modena, Italy
69167@studenti.unimore.it

Roberto Zanasi
Information Engineering Department
University of Modena e Reggio Emilia
Via Vignolese 905, 41100 Modena, Italy
roberto.zanasi@unimore.it

Abstract—This paper deals with the modeling of multi-phase permanent magnet synchronous motors under multi open phase fault condition. The presented model is suitable for generic number of phases, generic shape of the rotor flux and generic number of open circuit faults. The motor model in fault condition can be used for faults occurring on both adjacent and not adjacent phases. The model can be very useful both for simulation and implementation of fault-tolerant control strategies.

I. INTRODUCTION

Multi-phase machines offer some advantages and greater number of degrees of freedom compared to three-phase machines, see [1] and [2]. One of these advantages is the better fault tolerance and this is very important in propulsion and traction applications where high reliability is a very important issue. A great number of fault-tolerant control strategies have been proposed, see [3], [4] and [5], in order to make the motor able to operate safely even in case of fault in particular obtaining ripple-free torque and minimizing losses. In [10] the modeling and control of a three-phase PMSM under supply fault conditions is investigated. However in the literature any model of the motor in fault condition is investigated.

In this paper the model of a multi-phase PM machine in case of multi open circuited phase is proposed. The open circuit fault can occur to any of the phases and both cases of adjacent and not adjacent open phases may be simulated. The model is obtained with the Power-Oriented Graphs modeling technique and can be directly implemented in a general-type simulator. Thanks to this model the different control strategies for faulty operation of the motor can be tested before the implementation on a real machine.

The paper is organized as follows. Sec. II introduces the main features of POG technique, Sec. III shows the details of the dynamic model of the m_p-phase synchronous motors, in Sec. IV the model of the motor in open phase fault condition is presented and Sec. V is devoted to simulation results. Conclusions are given in Sec. VI.

II. POWER-ORIENTED GRAPHS BASIC PRINCIPLES

The Power-Oriented Graphs technique, see [6], is an energy-based technique suitable for modeling physical systems. The POG are block diagrams combined with a particular modular structure essentially based on the use of the two blocks shown in Fig. 1.a and Fig. 1.b: the elaboration block (e.b.) stores and/or dissipates energy, the connection block (c.b.) redistributes the power within the system without storing nor dissipating energy. The c.b. transforms the power variables with the constraint $x_1'y_1 = x_2'y_2$. The circle in the e.b. is a summation element and the black spot represents a minus sign that multiplies the entering variable. POG keep a direct correspondence between the dashed sections of the graphs and real power sections of the modeled system: the scalar product $x'y$ of the two power vectors x and y involved in each dashed line of a POG, see Fig. 1, has the physical meaning of the power flowing through that particular section. Another important aspect of the POG technique is the direct correspondence between the POG representations and the corresponding state space descriptions. For example, the POG scheme shown in Fig. 2 can be represented by the state space equations given in (1) where the energy matrix L is symmetric and positive definite: $L = L^T > 0$. The dynamic model (1) can be transformed and reduced to system (2) using a “congruent” transformation $x = Tz$ (matrix T can also be rectangular and time-varying) where $\overline{L} = T'^TL$, $\overline{X} = T'^AT + T'^LT$ and $\overline{B} = T'^B$.

\begin{align*}
\begin{bmatrix}
 x_1' \\
 \vdots \\
 x_m'
\end{bmatrix} &= \begin{bmatrix} G(s) \end{bmatrix} \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_m
\end{bmatrix} \\
\begin{bmatrix}
 y_1' \\
 \vdots \\
 y_m'
\end{bmatrix} &= \begin{bmatrix} K \end{bmatrix} \begin{bmatrix}
 y_1 \\
 \vdots \\
 y_m
\end{bmatrix}
\end{align*}

Figure 1. POG basic blocks: a) elaboration block; b) connection block.

\begin{align*}
L \dot{x} &= -Ax + Bu \\
\dot{y} &= B'x \\
\downarrow & (x = Tz) \\
Lz &= -\overline{X}z + Bu \\
y &= \overline{B}'z
\end{align*}

Figure 2. POG scheme of a generic dynamic system in the complex domain.