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Abstract—In recent years P2P technology has gained great
popularity not only in file sharing applications but also in the
field of video distribution.

This work proposes a simple model to assess the performance a
P2P system designed for video streaming can achieve, measured
in terms of average video delivery rate. The model allows to
compute system efficiency in a simple but accurate way through
the partition of peers in two distinct populations: bad peers, that
are not collaborative, and good peers, that contribute to share
their video contents with others. As a meaningful example, it
is employed to investigate the behavior of a real P2P prototype
subject to high peer dynamics: its effectiveness is proved via
experimental results, and sheds a new light on the way a
streaming service overlay can be centrally and timely monitored.

I. INTRODUCTION AND RELATED WORK

P2P technology for video and television broadcasting has
experienced a rising success among network users. The rea-
sons of its success are the lack of necessity of network
infrastructure support and the possibility of peers to cooperate
with each other in order to diffuse contents. These factors
allow to have the reduction of implementation costs and a
great scalability.

An excellent tutorial on P2P-based broadcast is provided
in [1], together with a critical discussion on the challenges
accompanying its wide-scale deployment. A direct insight on
a live video streaming architecture is offered in [2], discussing
possible improvements and key trade-offs in system design.
The contributions in [3], [4] and [5] reveal features and
potentials of the P2P technology when deployed in the live
streaming arena. Finally, IP-TV provisioning with service
guarantees, traffic pressure on ISPs and security concerns are
discussed in [6].

There are undoubtedly several relevant issues to face in
the design of a P2P streaming architecture. In this work, we
investigate how the performance of a P2P streaming system
can be assessed in a simple yet accurate manner. The perfor-
mance metric we consider is the average video delivery rate,
definitely a good indicator to quantify the efficiency that the
overlay achieves. An effective and tractable analytical model,

that groups the overlay peers in two distinct populations, is
proposed, leading to a closed-form expression for the evolution
of such efficiency metric as a function of time. This analytical
form is then employed to successfully predict the performance
variations that the P2P overlay displays when different time
trends for the number of peers in system are examined.

In literature there are some theoretical papers that venture
into the modeling and analysis of P2P streaming systems.
An interesting analytical study is presented in [7], where
the authors highlight the effect of some factors, such as
upload/download capacity heterogeneity and playback delay,
on system behavior. In particular, the reference metric they
adopt is the probability of universal streaming, a condition that
occurs when all peers within the overlay receive the video at
the full streaming rate and are therefore completely satisfied
of the service they experience. Determining such probability
relies on the resource index, a time-varying system parameter,
defined as the ratio between the available overall capacity,
provided by contributing peers and by the video server, and
the total bandwidth required to achieve universal streaming. In
[8], a significant and original modeling effort is performed to
investigate the performance of a multi-channel P2P streaming
system. In this work too, Wu et al. employ the resource
index as the quantitative measure of channel streaming quality,
in order to understand when the system reaches universal
streaming. Also our simulations and experiments adopt this
metric to determine if the system is working in an underloaded
or overloaded status, as in [9]: in the former condition, there
is excess capacity to fulfill all peers’ download requirements,
whereas in the latter, capacity is scarce. But the analytical
model we present in this paper provides more, as it allows to
evaluate to what extent system performance degrades in case
of a sudden step join of new users. In [7] and [8], the only
stochastic process is the number of peers in system, while the
peers’ upload contributions coincide with their capacities; in
our model, instead, we consider the bandwidth that the peers
actually provide, and therefore have two different stochastic
processes: the actual upload bandwidth and the number of
peers concurrently connected. As the results will show, this



allows to capture some behaviors that otherwise would go
unseen.

A P2P video streaming system is also analyzed in [10],
where the authors evaluate the performance of the P2P ar-
chitecture via its efficiency, defined as the probability of a
peer being in the uploading status. This model proves that the
upper bound of efficiency is tightly correlated to the average
number of neighbors each peer owns. In our work, instead,
system efficiency is more reasonably defined as the average
video delivery rate that is achieved within the overlay, and it
is computed as a function of the overall number of “good”
contributing peers.

The soundness and effectiveness of the proposed model is
proved resorting to a simulative reproduction of a P2P overlay:
in particular, the analytically predicted values of the efficiency
indicator and the values observed via simulation are extremely
close. Tests are also conducted on a real P2P video streaming
prototype: the PlanetLab [11] replica of analogous stresses on
the examined system reveal that indeed the proposed approach
closely reflects what happens in the overlay.

Additionally, the model quantitatively highlights when a
successful distribution of the video can be achieved, via a
condition on the ratio between the size of the peer population
that uploads content and the totality of the active peers.

The rest of the paper is organized as follows. Section II
introduces the efficiency indicator employed to evaluate the
performance of the P2P video streaming system and describes
the partition of peers into two different populations. Section
III presents the derivation of the mathematical model and
the closed-form expression for system efficiency. Section IV
discusses experimental results, that validate the model and
support its predictions. Finally, Section V concludes the paper
and suggests possible future work.

II. DEFINITIONS AND ASSUMPTIONS

A. Efficiency Measure at System Level

We consider a general reference model for the P2P system,
without introducing any specific assumption on the underlying
overlay topology (i.e., mesh, tree, hybrid), and choose as the
elementary building blocks of our analysis the upload and
the download rates effectively exploited by the peer x at
time t, that we term u(t, x) and d(t, x), respectively. A very
reasonable efficiency indicator for peer x at time t is the ratio
d(t,x)

d
, where d represents the video streaming rate, so that this

ratio takes on values between 0 and 1, unity indicating that the
peer is able to download the whole stream. Notice however that
a value strictly lower than one does not necessarily imply the
peer is not satisfied: that will depend on the actual encoding
scheme the system adopts.

Next, we introduce the efficiency E(t) at time t of the whole
system: denoting by N(t) the set of peers in the overlay at
time t, we set

E(t) =
1

N(t) · d

∑

x∈N(t)

d(t, x) . (1)

In other words, E(t) is defined as the average download rate
normalized to the streaming rate d, and as such 0 ≤ E(t) ≤ 1.

We next recall what we term “the information conservation
law”, that will be of use for E(t) analysis. We first denote
by US(t) the server upload bandwidth being instantaneously
utilized, and by S the server capacity, so that US(t) ≤ S.
Information Conservation Law
In a generic P2P streaming system, at any given time t, the
following relation holds

US(t) +
∑

x∈N(t)

u(t, x) ≥
∑

x∈N(t)

d(t, x) . (2)

This law simply states that the server bandwidth plus the
overall upload bandwidth of the peers that contribute to the
system good functioning is greater than or equal to the sum of
all download rates. We further observe that the equal sign in
(2) corresponds to the optimistic situation where neither packet
losses are observed, nor duplicate packets are transmitted in
the overlay. Intentionally, we focus our attention on this limit
circumstance, so that we consider

US(t) +
∑

x∈N(t)

u(t, x) =
∑

x∈N(t)

d(t, x) . (3)

From (3) it follows that E(t) can be equivalently defined in
terms of upload rates as

E(t) =

∑

x∈N(t) u(t, x) + US(t)

N(t) · d
. (4)

We close this subsection observing that system efficiency
E(t) as defined in (4) is profoundly different from the resource
index σ widely used in literature [7]-[9]. If we indicate by
umax(x) the constant upload capacity of peer x, umax(x) ≥
u(t, x), ∀x, ∀t, we recall that σ is defined as

σ =
1

N(t) · d





∑

x∈N(t)

umax(x) + S



 . (5)

Incidentally, the P2P system is said to be underloaded when it
displays a resource index greater than or equal to 1, meaning
that – in principle – there is excess capacity to satisfy all
peers’ download requests (in a complementary manner, the
P2P system is overloaded when σ < 1). Yet, in (5) the
only stochastic process is N(t). On the contrary, in (4) the
terms u(t, x) and US(t) can fluctuate too, and are therefore
responsible for the essential difference between E(t) and the
resource index σ. It is precisely this difference that allows to
capture some system behavior that would otherwise go unseen,
if σ is the only indicator considered.

The reader should simply think of the impact of a flash
crowd, i.e., of a peculiar N(t) instance, on system perfor-
mance: in this case, the resource index σ reveals little, only
the generic indication of either a system with scarce or excess
capacity. E(t) does: as it will be shown next, it correctly seizes
the occurrence of a potential risk for the overlay and quantifies
the transient worsening in performance that takes place.



III. MODEL DERIVATION

To capture the evolution in time of the overlay and to
understand the dynamic behavior of its efficiency, we assume
that system peers N(t) can be divided into two populations,
that we denote by G(t) and B(t): whenever there is no
ambiguity, we will omit the time dependence to keep the
notation slim.

G is the good population, whose salient feature is that a
peer x ∈ G uploads content to other peers, subject to the
constraint that its upload capacity umax(x) is not trespassed,
i.e., 0 < u(t, x) ≤ umax(x), for x ∈ G.

B is the population of “bad” peers, whose upload rate is
null, u(t, x) = 0 for x ∈ B. The free rider population resides
in B, as such nodes cannot upload content to other peers: this
feature is structural, due to, e.g., the free rider lying behind a
NAT or firewall. Also new peers entering the overlay belong
to B, as initially they have no content to share.

Later on, peers in B that are not free riders might migrate
from B to G: a properly behaving P2P system has to meet
the goal of reducing their residence times in B by as much as
possible, promoting their quick transition from B to G.

In our analysis we make the following hypotheses:
(H1) ∀x ∈ G, d(t, x) = dmax, where dmax = d ·min(1, σ). In

other words, good peers successfully download content
at the maximal rate that the network can support for a
given resource index σ.

(H2) Peers in B that are free riders are not penalized by the
system: hence, their download rate is d(t, x) = dmax too.
New comers, however, have d(t, x) < dmax.

(H3) The examined system is a “pure” P2P overlay: equiva-
lently, the server percentually provides a marginal contri-
bution to the system good functioning, the S/d ratio being
far lower than N(t). Moreover, its capacity is utilized in
full, so that US(t) = S, ∀ t.

(H4) M classes of nodes are present in N(t), reflecting some
a priori distribution. We denote by pj , j = 1, 2 . . . ,M ,
the percentages of peers in each class and by umax−j the
corresponding capacities.

We first provide an E(t) rewriting in terms of the unknown
population of bad peers B(t) and their average download rate
dB(t) at time t, dB(t) = 1

B(t)

∑

x∈B(t)

d(t, x). Owing to (H1)

and (H2) we can express the sum of all download rates as
∑

x∈N(t)

d(t, x) = dmax · G(t) + dB(t) · B(t) . (6)

Thanks to (6) and observing that G(t)+B(t) = N(t), we can
rewrite E(t) given by (1) as

E(t) =
dmax G(t) + dB(t)B(t)

N(t) · d

=
dmax N(t) − (dmax − dB(t))B(t)

N(t) · d

= min(1, σ) −
(dmax − dB(t))B(t)

N(t) · d
. (7)

Next proposition deals with the average download rate of
bad peers, dB(t).

Proposition 1: If we assume that the system works opti-
mally, i.e., it satisfies all download requests up to its overall
capacity constraint, we have that

dB(t) = dmax · ϕ

(

S + (umax(t) − dmax)G(t)

dmaxB(t)

)

, (8)

where ϕ(r) = max(0,min(1, r)) and umax(t) is the average
upload capacity of the peers in G.
To obtain (8), let us indicate by uG(t) the average upload rate
of good peers at time t,

uG(t) =
1

G(t)

∑

x∈G(t)

u(t, x) ; (9)

taking advantage of (H3), (9) and (6), we can rewrite (3) as

S + uG(t) · G(t) = dmax · G(t) + dB(t) · B(t) , (10)

whence

dB(t) =
S + (uG(t) − dmax) · G(t)

B(t)
. (11)

The hypothesis of a system that works optimally translates
into

uG(t) = umax(t) , (12)

where we define umax(t) as

umax(t) =
1

G(t)

∑

x∈G(t)

umax(x) ; (13)

once (13) is replaced in (11), it leads to

dB(t) =
S + [umax(t) − dmax]G(t)

B(t)
, (14)

with 0 ≤ dB(t) ≤ dmax or, in more compact notation, to (8).
Let us exploit dB(t) expression for an interesting rewriting

of system efficiency E(t). In particular, for the special case
when dB(t) = dmax, E(t) in (7) turns into

E(t) = min(1, σ) , (15)

whereas when dB(t) takes on the expression in (14), then

E(t) = min(1, σ) −
(dmax −

S−[umax(t)−dmax](t)G(t)
B(t) ) · B(t)

N(t) · d
(16)

that through a few, simple algebraic steps becomes

E(t) =
umax(t)G(t) + S

N(t) · d
(17)

By our assumption (H4) on the classes of nodes present
in G, we infer that, given the free rider percentage is not
excessive, then for G large enough it is reasonable to state that
its composition reflects N(t) composition, so that umax(t) can
be well approximated by the a priori mean

umax =

M
∑

j=1

umax−j · pj . (18)



This fact justifies the replacement of umax(t) by umax in (17)
without significantly affecting the evaluation of E(t), and the
goodness of such replacement is confirmed by the numerical
tests presented in the next section. Thanks to this observation,
we can rewrite (17) and merge it with (15) into

E(t) = min

{

min(1, σ),
umax G(t) + S

N(t) · d

}

. (19)

Formula (19) shows that E(t) can follow two different
regimes. In the first, E(t) coincides with the minimum be-
tween 1 and the resource index σ; in the second, E(t) can
significantly depart from the resource index σ.

IV. NUMERICAL RESULTS

To validate the model and support its predictions, we have
resorted to both simulations and real experiments, as detailed
in the following subsections.

A. Simulations via PeerSim

For the numerical assessment we resorted to PeerSim [12],
a Java based simulator whose basic version allows to simulate
P2P systems for file sharing. For video streaming delivery,
we have employed and tailored to our purposes an additional
protocol, named Overlay Streaming Distribution Protocol [13],
and its corresponding modules. This is a hybrid push-pull,
mesh-based streaming protocol devised for real time content
distribution.

In the examined framework, the video to be distributed to
the peers within the overlay is divided into M substreams,
each with a rate of d/M : in our simulations M = 16.
All M substreams have to be received by each peer, in
order to guarantee a proper reconstruction of the video. Upon
joining the overlay, a new peer is immediately given a list
of neighbors, and it is among them that the peer randomly
selects its potential parent peers: once these are contacted, if
they possess the desired substream and have not exhausted
their upload capacity, they start providing the newcomer with
video chunks. As the envisioned distribution scheme is push-
pull, once a parent peer starts delivering video chunks to a
child peer, it continues to do so until either the parent leaves
the overlay or the child itself departs. Additionally, every peer
is forced to provide each of its children peers, i.e., the peers
that receive content from it, with one single substream, to
avoid the very likely disruption in video quality that its sudden
departure would cause.

Peers dynamically enter and leave the overlay: their in-
terarrival time and lifetime can follow different distribution
functions. We have employed the exponential cumulative dis-
tribution function to describe the lifetime of the peers, with
an average value 1

µ
equal to the duration of the video stream,

made of 104 chunks, and verified that, for a given average,
modifying the choice of the actual statistics does not play a
significant role. Moreover, the time unit the simulator adopts
coincides with the time required to transmit a video chunk and
the simulation time is equal to the total video stream duration.

Residential Institutional Free Rider
Scenario 1 70% : 1/2d 20% : 7/6d 10% : 0d
Scenario 2 70% : 1/2d 30% : 7/6d −

Scenario 3 40% : 2/3d 60% : 5/3d −

TABLE I
PEERS UPLOAD DISTRIBUTION

N = 100 N ≥ 1000

Scenario 1 σ = 0.78 σ ' 0.58
Scenario 2 σ = 0.9 σ ' 0.7
Scenario 3 σ = 1.47 σ ' 1.27

TABLE II
RESOURCE INDEX IN THE EXAMINED SETTING

In our simulations, according to [9], we have considered a
heterogeneous population of nodes, with different classes of
users, as reported in Table I: in the first examined scenario,
given the video streaming rate is d, with probability 0.7 peers
are classified as ”residential” and exhibit an upload capacity
of 1

2d; with probability 0.2 they are “institutional”, with an
upload capacity of 7

6d, while with probability 0.1 they are free
riders, i.e., their upload capacity is null. In the second scenario,
with probability 0.7 the peers have an upload capacity of 1

2d
and with probability 0.3 can provide 7

6d. Lastly, in the third
scenario with probability 0.4 peers have an upload bandwidth
of 2

3d and with probability 0.6 they can provide 5
3d. As regards

the streaming server, its upload bandwidth S is k = 20 times
the streaming rate d, respecting the assumption that we are
considering a pure P2P architecture. Moreover, every node
has a download bandwidth exactly equal to the streaming rate
d.

Depending on the number N of nodes in the overlay, the
resource index σ takes on different values: for the scenarios
described above, a few are reported in Table II, indicating that
for the values of N that are of practical interest, the first two
settings refer to an overloaded system (σ < 1), whereas the
third to an underloaded one (σ ≥ 1).

We have next recreated several instances for the evolution of
the number in system N(t), all exhibiting a sudden increase
at some point in time: this is what is typically observed in
P2P broadcasting system when a very popular television event
occurs.

Here we report the results obtained imposing a disruptive
ramp-like input of new nodes, but analogous outcomes have
been obtained in different settings and for different system
inputs. As an example, Fig.1 shows the evolution of N(t) we
have taken into consideration and its partition into G(t) and
B(t) in the first examined scenario. The solid line corresponds
to N(t), the dashed line to B(t) and the dotted line to G(t).
Note that the average of the peer interarrival time takes on
different values in different time intervals, to guarantee N(t)
exhibits the behavior shown in the figure.

The lower set of curves reported in Fig.2 give the corre-
sponding E(t) evolution as witnessed by simulation and by
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Fig. 1. Partition of N(t) in B(t) and G(t) for the harsh step join in the
first examined scenario (overloaded case)

analysis, namely, by eq.(19); two additional pair of curves are
shown, that refer to the second and third scenario. Solid lines
indicate E(t) as obtained through simulation, dashed lines
report E(t) as analytically determined. By visual inspection
we conclude that the analytical results are very close to the
simulation outcomes: the model is successful in providing the
correct time trend that system efficiency follows. Most impor-
tantly, it quantifies the worsening in system performance that
occurs when the flash crowd hits the overlay, a phenomenon
that goes completely unseen if the resource index σ only is
considered: indeed, E(t) coincides with σ only before - and
well after – the step join takes place, but it significantly departs
from it during the transient.
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Fig. 2. E(t) evolution corresponding to the input of Fig.1 in the three
examined scenarios

B. Experimental Results via Gridmedia on PlanetLab

To check the soundness of E(t) evolution we have also
resorted to experiments via a real P2P streaming prototype,
GridMedia [14][15], investigating its behavior in the presence
of flash crowds on PlanetLab.

PeerSim PlanetLab
Initial peer population ˜100 ˜5

After the “ramp-like” input ˜10000 ˜500

TABLE III
MAIN PARAMETER VALUES FOR PEERSIM AND PLANETLAB

EXPERIMENTS

GridMedia delivers video packets relying upon UDP at
transport layer, whereas all control messages (e.g., buffer
maps) are transmitted via TCP. The GridMedia version we
installed on our streaming server divides the video to be dis-
tributed into M = 16 substreams and adopts a “hybrid” push-
pull approach: whenever a GridMedia client peer requests a
packet from a neighbor, then all packets belonging to the same
substream are automatically pushed from the neighbor to the
node.

We have repeatedly distributed an H.264 video stream coded
at 500 kbits/s, with a duration of 10 minutes, within an overlay
of PlanetLab nodes where we installed the GridMedia client
software, and have performed numerous tests imposing an
exponential distribution for the lifetime as well as for the
off-line time of the client peers. Additionally, we have set
the server upload capacity to a value slightly greater than the
streaming rate.

The experiments involved a maximum of 500 nodes, an
actual PlanetLab limit we had to face. Hence, we properly
scaled down from the original simulation setup by a factor of
20, as summarized in Table III.

In detail, we have recreated the ramp-like input, that from
the original population size of 5 exhibits a sudden boost of
new peers, up to slightly less than 500. An instance of the
N(t) evolution in time that we have considered is PlanetLab
is displayed in Fig.3, together with the size G(t) of the good
population we record in system. From an operational point of
view, we have defined a peer to be “good” as soon as it starts
providing an upload rate greater than the single substream rate,
roughly around 30 kbit/s.

During each experiment, system efficiency E(t) has been
experimentally determined, i.e., (4) has been evaluated col-
lecting the upload rates of all peers from the GridMedia
logserver with a ten-seconds frequency. Fig. 4 displays the
average E(t) behavior, obtained by further averaging the
results of 10 different experiments: the solid line refers to E(t)
values obtained from PlanetLab measurements, the dashed line
to E(t) as predicted by the model through (19), inferring
the nodes’ capacities from their maximum upload rates. The
experimental results successfully validate the model. They also
indicate that, when many peers enter the system all together
in a small time window, E(t) significantly decreases, then it
gradually recovers.

As a conclusion, these outcomes demonstrate that the effi-
ciency a real system achieves is the same as the one predicted
by our model.
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V. CONCLUSIONS

This paper has tackled the issue of measuring network
efficiency in a P2P video streaming system and of investigating
how swift peer dynamics affect such efficiency.

It has focused on an appropriate merit figure, the average
normalized video delivery rate, and has put forth a simple
model that partitions the overlay peers into two distinct
populations: this has allowed to derive a simple, yet accurate
closed-form expression for the examined metric.

The model can be employed to predict the efficiency
variations displayed by the P2P overlay when stressed by
different inputs of peers: in particular, it quantifies how the
average delivery rate decreases when a flash crowd occurs,
highlighting the remarkable dependence of this metric on the
intensity of the input of new nodes. Its results have been
successfully validated via both simulations and experiments:
the model therefore allows to monitor system performance in
a centralized, yet very light and cost-effective manner. It also
represents an effective tool to rely upon, when proactively
reacting to critical operating conditions that start building up
within the P2P system: its real-time indications are essential

to drive the adoption of suitable countermeasures, in order to
re-establish satisfying operating conditions.
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