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Abstract P2P architectures designed for video broadcasting have in the very last
years gained a prominent role. This Chapter aims at providing a comprehensive in-
sight of the most recent advances in the field, focusing on live video streaming. The
first part of the Chapter puts forth a classification of P2P video solutions, adopting
alternative sorting criteria that hide different design approaches. It then concentrates
on the conceptually attractive issue of data diffusion process within the P2P overlay.
An overview of the most interesting P2P IP-TV systems currently available over
the Internet is also provided, and the most salient featuresthey exhibit highlighted.
Next, the definition of the quality of experience (QoE) for a system user, as well as
the recording of the whole system performance via local and centralized measure-
ment approaches, is commented upon. The second part of the Chapter completes
the view, bringing up the modeling efforts that capture the main characteristics and
limits of a P2P streaming system, both analytically and numerically. The Chapter
is closed by a pristine look at some challenging, open questions: the issue of peers
that lie behind NAT and firewalls is discussed; the benefits and the limits of cross-
layer design are commented, with a specific emphasis onto theadoption of advanced
coding techniques.
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1 Live streaming and IP-TV

Traditionally, video delivery over the Internet relies upon the consolidated client-
server paradigm. In this perspective a centralized server has to be accessed by all
clients that wish to download the desired video stream, as Fig.1 illustrates.

Fig. 1 The conventional client-server architecture for video delivery over the Internet

This simplified view immediately suggests that the server access bandwidth is
the most limiting factor against system scalability, at least in terms of network re-
sources. Referring to the case of constant bit rate connections, when the number of
concurrently active clients increases and the sum of the bandwidths that their flows
require equals the server access bandwidth, then the video streaming system satu-
rates. No more users can be supported, otherwise congestionwill soon appear and
markedly penalize the throughput of the video application.

More generally, the client-server approach entails that the video server be the
edge of as many unicast connections as the number of clients:one video stream per
client is individually and separately taken to destination, consuming bandwidth and
network resources, and possibly generating congestion along all traversed paths.
Definitely, not a smart solution for several video applications: it suffices to think of
the broadcasting of television events, where the same information has to be simul-
taneously delivered to each subscriber.

Multicasting at the IP-layer, probably the cleanest solution from a conceptual
viewpoint, was first proposed to relieve the problem, but IP multicast never took
place over the global Internet [1]. The violation of the stateless principle of IP
routers, the lack of scalability, the increased difficulty in performing congestion and
error control at transport layer on multicast connections were probably the technical
factors that mostly limited its inception.

One of the novelty of P2P for video delivery over the Internetresides in moving
the multicast approach to the application layer. Another unique point being that it
is up to the same end-users of the multicast group to collaborate in the process of
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swarming the information across the network to other users:a node in the overlay
will not only receive the desired video, but will also cooperate to distribute the
video to other peers. As we will see in next Section, the way the video information
propagates across the peer overlay provides the most relevant metric to classify P2P
systems for video delivery.

In P2P solutions the video stream is divided into relativelysmall, equal size
chunks, that typically contain a few seconds of the originalvideo. Participating peers
make some of their untapped resources available to the system, most notably their
upload bandwidth, to pass the video chunks they already own to other peers: this
greatly relieves the burden on the original streaming server. Moreover, the infras-
tructure requirements of the application-layer approach are so minimal, that they
really make P2P an attractive candidate for video distribution over the Internet.

Undoubtedly, the low cost of such application-layer approach makes it a strong
candidate to satisfy the demand for video distribution overthe Internet, for a variety
of heterogeneous services.

To conclude this introductory discussion, observe that P2Phad already gained its
slice of popularity in file sharing applications, well before it was extended to video
delivery. It is however worth underlining that the migration of the P2P approach
to this new realm was not painless: video applications exhibit peculiar features,
unknown to file sharing, most prominently the real-time constraints that the great
majority of them imposes on information delivery; moreover, video services are and
will be bandwidth eager, by far a more challenging characteristics than VoIP, another
very common real-time application.

Hence, the focus shifts: whereas efficient indexing and searching techniques are
of paramount importance in P2P systems for file sharing, a careful scheduling to
minimize delays is required when the P2P overlay handles video, as well as a satis-
fying resilience to peer churning, i.e., to a swift increase/decrease in the number of
peers within the overlay. The ultimate goal is to warrant a satisfying Quality of Ex-
perience (QoE) to the peers viewing the video, as well as smooth, confined quality
variations.

2 A taxonomy of P2P video broadcasting systems

Video applications over the Internet span quite a broadcastrange: from video-
conferencing, imposing very strict time constraints, to live video streaming with
nearly synchronized users – this is what we will mainly referto in what follows, in-
terchangeably using the IP-TV and video broadcasting terms–, to video on demand,
the most delay-tolerant category.

Let us therefore illustrate the main classification of the P2P systems devised for
IP-TV, employing the approach to overlay construction as the sorting criterion. P2P
solutions are accordingly distinguished in tree-based andmesh-based architectures
[2]. In the former the video stream propagates from the source via a tree of peers, so
that gradually the video spreads over the entire overlay, from the root of the tree to
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its last leaves. Recall that the tree is built at the application layer, and relies on the
underlying unicast IP connections.

Fig.2 illustrates the idea: in this example, peers A and B receive the video from
the source root and then forward it to peers C and D, E and F, respectively; in turn,
peer C is in charge of delivering it to leaf peers G and H, peer Fto leaf peer I.

Fig. 2 High level scheme for a tree based P2P overlay

This solution is also termed push-based, as the video is pushed along the tree,
a topology that naturally meets the multicasting demand. How is the tree formed?
When a new peer has to join it, bandwidth and delay are the indicators that typically
drive the choice of the parent node: the peer can select the parent depending on the
round trip time from it, on the application throughput the parent experiences, on its
uploading bandwidth. Avoiding loops is the constraint to respect.

Easy as it appears, this solution unfortunately exhibits several drawbacks: it is
prone to outages, as the departure of a non-leaf peer from theoverlay deprives all
its descendants of the video content; it does not utilize theupload bandwidth of
leaf peers, that only receive content, but do not collaborate in distributing the video
across the overlay.

Next natural step is therefore to resort to a multitree overlay, where robustness
and better efficiency is achieved via multiple, disjoint trees, where peers that are
leaves in a tree are not so in a different one. Fig.3 reports a simple example of a mul-
titree topology, where the differently shaded arrows identify different trees. In the
multitree topology, the source encodes the video stream into multiple substreams,
each substream flowing on a different tree. A peer typically joins more trees, de-
pending on its access link bandwidth, and experiences a quality that depends on the
number of substreams it receives. The push mechanism of the single tree topology
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Fig. 3 The multitree concept

is retained, as packets belonging to one substream are simply forwarded from the
parent node to its children peers along the corresponding tree.

The main objective to pursue in this articulated topology isto build – and main-
tain – short and balanced trees. It follows that peers often need to be dynamically
reallocated within trees, due to the events of peer joining and departing.

The approach is completely different in mesh-based overlays, also termed pull-
based architectures. There is no predefined topology here, no a priori notion of trees
for data delivery. Rather, each peer maintains a list of partners and periodically ex-
changes with them information about the available data. It then “pulls” the desired
blocks of video from one of the peers that advertises them, also supplying avail-
able data to other partners. Partnerships are updated at a proper rate, to ensure both
robustness to failures and efficiency in the data diffusion process.

At first sight, the swarming process of this solution closelyresembles popular
P2P systems for file sharing like BitTorrent. There is however a significant differ-
ence: video has to obey strict time requirements, its blocksneed to be delivered
without suffering an unbearable delay and jitter; if it werenot so, quality would be
unfavorably affected. It follows that the scheduling peersadopt to pull the blocks
from their parents is significantly different from the ones implemented in P2P file
sharing architectures: it has to minimize delay, so as to guarantee that the majority
of the downloaded chunks respect the playback deadline.

Some among the currently most popular P2P systems fall within the mesh cat-
egory, and we have chosen to describe their main features in greater detail in next
Section.

What is the best solution between mesh and tree? We anticipatehere that both ar-
chitectures enjoy benefits and drawbacks: the pull-based overlay, the most diffused
in commercial systems, is simple to implement and to maintain; it is efficient, as data
forwarding is not restricted to specific directions; it is resilient to swift peer dynam-
ics [3]. Yet, it often suffers significant delays at start-uptime and when switching
channel, as well as non negligible time lags between peers viewing the same video.
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The time spent by the peer in the process of information exchange, required to know
which partner owns which information, is responsible for a large fraction of the ser-
vice delay the peer suffers [4]. On the contrary, delays are definitely confined in
tree-based systems, but the signaling overhead and the complexity in system design
and management, to guarantee stable and resilient trees, isnot to be underestimated
[2].

So far, we have assumed that both tree and mesh-based overlays be organized in a
flat, non hierarchical manner. Recently however, an architecture has been proposed,
where peers are structured in tiers [5]. The starting point of the proposal is that in a
mesh-based overlay not only most of the data blocks propagate via tree structures,
but also the majority of them is delivered via an implicit stable backbone [5].

The solutions the authors put forth is therefore a layered architecture, where a
first backbone tier of more stable peers with sufficient access bandwidth is organized
in a tree structure, and serves more fluctuating nodes, that are placed in a second
tier; this second tier can accommodate diverse overlay structures, i.e., either mesh
or additional trees.

It therefore appears useful to further distinguish P2P system topologies in flat
and layered categories. This classification also turns out convenient when discussing
hybrid architectures, that combine the adoption of the P2P paradigm and of content
replication servers, strategically placed over the Internet: these systems can well
be framed within the layered category, provided the nodes ofthe tier-1 backbone
represent the stable, always available servers, as opposedto the less predictable
end-user peers of the second tier.

Last, P2P architectures for IP-TV can be distinguished on the basis of the number
of their potential users, classifying P2P systems in small or large size overlays. P2P
architectures serving the needs of prosumers (producers and consumers), wishing to
broadcast their own video content fall within the first class, and are separated from
large P2P systems tailored to the requirements of major TV broadcasters and service
content providers. Within the first category, pure P2P overlays, that do not rely upon
the presence of content delivery servers, represent an appealing solution; on the
contrary, hybrid systems represent the most popular proposal when scalability, as
well as reliable service provisioning, are the major constraints.

3 The diffusion process in mesh architectures and
a reference system

As promised earlier, we now concentrate on the main characteristics exhibited by
an unlayered, mesh-based overlay. The focus is often on CoolStreaming, [3], [6],
[7], one of the most popular pull-based systems (at least in its original version),
generally referenced in the scientific community as the benchmark.

Its developers initially preferred to describe its design as a “data-driven” ap-
proach, rather than mesh-based: indeed, no specific overlaystructure confines the
data flow direction.
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The concept behind a mesh system is simple: peers help each other and cooperate
in the delivery process, exchanging video chunks. For a generic pull-based architec-
ture it can be affirmed that, when a new peer joins the system because it desires to
view the video, the peer first contacts the origin node, wherethe original video is
available. In the simplest case, what happens next is that the origin server redirects
the new peer to a tracker, maintaining a membership list: thetracker provides the
peer a set of potential partners, that the new node contacts to establish the relation-
ships required to start receiving video chunks. As soon as such relationships are set,
the peer starts receiving the buffer maps of its partners, i.e., short control messages
that every peer periodically forwards to indicate its available chunks. The new peer
will in turn forward its buffer maps, although at the very beginning they will reveal
that the node has no content to share with other participantsof the overlay. Form
the buffer maps it receives, the new peer can identify its potentialparents, i.e., the
most appropriate partners from which to start to fetch the video chunks via a proper
scheduling algorithm.

Note that there is a signification distinction between the terms overlay members,
partners and parents [7]: the first term identifies all end-users in the overlay, wishing
to view the same video; the second term refers to the peers that exchange informa-
tion with the reference peer about chunk availability via their buffer maps; the third
term indicates what peers (the parents) are actually providing video content to the
peer (the child). The mutual relation between overlay members, partners and parents
is graphically represented in Fig.4.

Fig. 4 Overlay members, partners and parents
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As for the buffer map, its simplest structure hosts a string of zero’s and one’s,
where the one indicates that the chunk is available at the peer, whereas the zero tells
that the peer does not own the chunk; a proper offset allows toidentify the first chunk
of the sequence that the map refers to. This is exactly the description of the buffer
maps in the original CoolStreaming prototype, that employed 120 bit long strings.
Given a chunk contains one second of video, we immediately conclude that there
are a couple of minutes available in the peer buffer, a typical order of magnitude for
most P2P systems.

After receiving the buffer maps, the peer can request the chunks that it is missing
and that are advertised by other peers. The request scheduling is a delicate issue:
video chunks have to meet severe playback deadlines; if theydo not, their late arrival
translates into a loss, and ultimately in a degraded qualityexperienced by the end-
user viewing the video. This constraint translates in rejecting the classical round
robin scheduler, in favor of heuristics that keep the numberof late or missing chunks
to a minimum, possibly equal to zero.

As an example, we refer to the scheduling algorithm of the first CoolStreaming
release [3], that starts by determining all potential suppliers of every chunk. The
chunks with fewer suppliers are considered first, and for each chunk, a unique sup-
plier is identified: it is the one with the highest bandwidth and enough available time
to transmit the chunk. Once a schedule is specified, an individual bit sequence re-
sembling the buffer map is sent to each supplier, indicatingthe chunks that the peer
intends to pull from it. The video chunks are then delivered to the requesting peer via
UDP connections, properly enhanced by the congestion control mechanism TFRC
implements [8], [9]. In passing by, we mention that TCP is alternatively adopted
by some P2P streaming systems for transporting video data, despite its overhead in
terms of connection opening and closing phase, as well as retransmission handling.

Let us now more thoroughly dissect the software architecture of a peer, to logi-
cally frame the different modules that constitute it: following the description in [4],
in the peer we distinguish the P2P streaming engine and the media player, as Fig.5
indicates.

The streaming engine has the responsibility of fetching video chunks from part-
ners; of storing the retrieved chunks in a buffer; of passingthe chunks to the media
player. It is also in charge of providing the available chunks to those peers requesting
them and to manage the buffer maps. Finally, it continuouslyupdates the partnership
list. Referring again to the first CoolStreaming, each node periodically establishes
new partner relations with randomly chosen partners: the node that provides the
lowest average number of chunks per unit time is discarded and replaced by a new,
better performing partner.

An additional, last point deserves a further refinement in our discussion: the over-
lay membership management. In small to medium sized overlays, peers retrieve
membership information directly from the tracker server, the unique repository of
the system view: this is exactly what we have assumed in our first discussion. It is
not so for large size P2P streaming systems, such as CoolStreaming: here a new
node joining the system contacts the source, that redirectsit to another peer, called
deputy peer (rather than to the tracker server), randomly selected from its own mem-
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Fig. 5 Software components in a peer

bership cache. The deputy (i) provides a list of eligible partners, that the new peer
contacts to establish its partner relationships, and also (ii) updates its own cache to
record the entry of the new peer. This redirection guarantees a more uniform partner
selection, as well as a reduced load over the video source. What is interesting to ob-
serve is that in each peer of the overlay there has to be not only a partnership cache,
but also a membership cache.

Why is this cache present in all peers and how is it managed?
The answer to the first question is important: the ultimate goal is to disseminate

among all peers a uniform, although forcedly partial view ofthe overlay members.
This is necessary for the deputy functions we cited above, but also because each peer
periodically consults its membership cache to replace partners, either when some of
them depart or when some better performing nodes become available. This happens
in a decentralized manner, without placing any burden on theorigin server.

The answer to the second question is that a gossiping protocol is employed to
create and update the membership cache, which in turn triggers the explanation of
what we mean by the term gossip-like algorithm. A gossip algorithm, also tagged
as epidemic, presents the following characteristics: a peer sends a new message (in
our case it periodically announces it exists) to a random subset of other peers; in
the next round these peers propagate the message in the same manner, and so do
next peers that receive it. Gradually, in a totally distributed manner, the information
the peer exits propagates in the overlay, contributing to the construction of the local
view of the overlay members at each peer that receives it.

When discussing the weaknesses of mesh-based systems, we already evidenced
that excessive initial delays are expected to plague this architecture: indeed, Cool-



10 Maria Luisa Merani and Daniela Saladino

Streaming earlier release had Achille’s heel of long initial delays, as well as a high
failure rate in joining a channel during a peer churn [7].

The diffusion process it adopted was then radically modified, and we intention-
ally describe it here, with the intent to understand how CoolStreaming and in general
P2P streaming overlays have to evolve to fulfill commercial system requirements.

The New CoolStreaming adopts a multiple substream solutionto better swarm
the video among its peers; in turn, this calls for a fundamental change in the archi-
tecture of the peer buffer, in its management, as well as in the scheduling scheme;
moreover, a new, hybrid push-pull mechanism that the peers adopt to download
video chunks is developed. Last but not least, CoolStreaming now employs multiple
servers, strategically located. Equivalently, the systemdoes not rely on a pure P2P
overlay any longer; rather, it now adopts a hybrid architecture, where the streaming
capacity is proportionally amplified with the number of servers, and the content is
taken closer to the end-users.

Let us see in detail the multiple substream solution and the novel buffer organi-
zation at the peer. As before, the video is divided in blocks of equal size; the novelty
relies in splitting the blocks in different substreams, as Fig.6 reports. Video chunks
are grouped according to the following pattern: given thatK substreams have to be
formed, thej-th substream (j = 1,2, . . . ,K) is made of the chunks with the following
sequence number in the original stream:j + i∗K, i = 0,1,2, . . ..

A peer can subscribe to one or more substreams, fetching the corresponding
chunks from multiple parents. Although no specific coding technique is employed,
the critical point resides in maintaining the synchronization among different sub-
streams.

Fig. 6 Decomposition of the original video stream in several substreams (4in the considered
example)

The structure of the peer buffer has to be accordingly modified: a synchronization
buffer precedes the cache buffer and hosts the chunks received from each substream,
sequentially ordered, as the example in Fig.7 shows. The chunks are then combined
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in a single stream as soon as chunks with contiguous sequencenumbers are received
from each substream.

In the example the video chunk with sequence number 11 is yet to be received
and therefore the combination process halts at this point inthe sequence.

Fig. 7 The logical organization of the peer buffer when 4 substreams are considered

As for the new buffer maps exchanged by peers in the New CoolStreaming sys-
tem, these too have undergone a significant rethinking: a buffer map now specifies
not only the chunk availability at the peer, but also its current requests. In greater
detail, the map is composed of two vectors, whose dimension is equal toK, the
number of substreams: the elements of the first vector indicate the sequence number
of the last chunks the peer received for every substream; theelements of the second
vector specify what substreams the peer wants to subscribe to.

We close this shot with the description of the new content delivery mechanism
adopted by CoolStreaming. As previously anticipated, peers in the original Cool-
Streaming prototype had to deliberately fetch – pull – each chunk from other peers.
The revisited architecture inherits the pull mechanism only for the first chunk of
the requested substream; from then onward, the parent peer will keep continuously
forwarding – pushing – all chunks to the requesting node.

Periodically, parents peers are updated, to replace nodes that either departed,
experienced a failure, or provided insufficient video content. We refer the interested
reader to [7], as well as to [10], for details about the parentreselection process.

4 Popular P2P streaming systems

We have already picked up the popular P2P CoolStreaming architecture as the ref-
erence example; there are however several additional systems that are worth be-
ing cited, most notably because they experience wide commercial success and rely
upon a large basis of users. Among them, we mention PPLive [11], SopCast [12],
UUSee [13], GridMedia [14], offering real-time services, and Joost [15] and Ba-
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belgum [16], offering Video-on-Demand (VoD) services. Allof these systems are
proprietary, have received a great success all over the world and their majority has
been developed in China.

In what follows we briefly glide over their main features, beginning with PPLive
[11]. It is one of the most popular P2P live streaming systems, born in China in
2004. It belongs to the mesh-based family, employs a pull-based protocol for video
content transmission and mostly relies on TCP. It offers more than 200 channels, has
an average of 400,000 daily users and the bit rate of its videoprograms ranges from
250 kbit/s to 400 kbit/s. It also offers a few channels at a rate of 800 kbit/s. Channels
are encoded with two video formats: Window Media Video (WMV) or Real Video
(RMVB) [17]. In PPLive the number of partner nodes of every peer depends on the
popularity of the selected channel and on the peer’s access type: peers with high
bandwidth access (also termed campus peers) have about 40 partners; peers with
residential access have a number of partners that ranges from about 10 to 30.

SopCast [12] is another P2P streaming application that provides both VoD and
live services, born in China in December 2004. It was able to support more than
100,000 concurrent users only a few months after its introduction. It employs a
mesh-based architecture and mostly relies on UDP. In contrast to PPLive, both resi-
dential and high bandwidth access peers typically downloadfrom 2 to 5 other peers.

UUSee [13] is an additional instance of very large scale P2P streaming solution
and was born in China too. It has several streaming servers around the world, si-
multaneously offers more than 800 channels, with 100,000 concurrent users, and
provides a streaming rate of 400 kbit/s. It belongs to the mesh-based family and
employs the pull-based approach. It relies on TCP for data transmission and the
number of partners for each user is around 50.

GridMedia [14] is still a Chinese large scale P2P live streaming system (there is
no doubt that China get’s the lion’s share in this field!), implementing a hybrid push-
pull protocol. It is able to support more than 224,000 simultaneous users and its
streaming rate is 300 kbit/s. The streaming server can support up to 800 connections
[18], therefore reaching 240 Mbit/s outgoing bandwidth at server side.

Finally, there are two interesting P2P Video-on-Demand (VoD) streaming solu-
tions, both conceived in Europe: Joost and Babelgum.

Joost [15] is a VoD P2P system for distributing TV content. Itwas created by
Niklas Zennstroem and Janus Friis, the Skype founders, in 2006. It relies on a mesh-
based P2P streaming overlay and every peer receives 95% of the video frames from
about 25 peers. Joost employs mostly UDP as transport protocol. In particular, UDP
is used to transmit data packets and TCP for control messagesonly. An important
feature of Joost is the adoption of a NAT detection mechanismin order to improve
system performance: if some peers lie behind the same NAT device, they tend to
transmit video content to each other.

Babelgum [16] is a Video-on-Demand P2P streaming system too, conceived by
Silvio Scaglia in 2005. It employs TCP for both control and data packets distribu-
tion. Every peer receives 95% of the video frames from about 8peers.
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Both systems, Joost and Babelgum, exhibit a hybrid architecture. Their behavior
is not purely P2P: rather, they resort to the help of some streaming servers located
around the world to distribute the video contents.

5 Measurements and quality monitoring

In this Section we are going to present a few significant measurements about some
large P2P commercial systems, namely, PPLive, SopCast and CoolStreaming. We
will also examine a small P2P architecture, featuring a moderate number of users.

Both measurements performed at network edge and at a centralfacility will be
introduced and commented: the former are attained client-side, where the single
peer itself can capture the local upload and download trafficand analyze them; the
latter are performed directly server-side. The log-serverhas a complete view of
the system: to cite a few significant records, number of peersconnected, session
durations, upload/download bandwidth of each peer, peers’IP address/port number.

There are several reasons for measuring and monitoring system parameters: per-
haps the most important is to guarantee a satisfying viewingexperience to system
users. This is an essential feature for wide commercial success of any P2P streaming
systems, that has to guarantee video playback continuity, without video freezing and
skipping, in order not to discourage the users. If a user is unsatisfied he/she could
decide to abandon the system. Therefore, the main goal is to optimize as much as
possible the quality perceived at the client side, the so-called Quality of Experience
(QoE).

Different factors could threaten the QoE: participating nodes heterogeneity, fre-
quent peers churn, delays. In what follows we explain the most significant IP-TV
quality metrics, that in turn have a deep impact on QoE: initial start-up delay, video
switching delay, video playback continuity.

The start-up delay is the time interval between the instant a channel is selected
and the instant when the video playback starts on the screen.This is a critical delay,
with a straightforward influence on the viewing experience of the users.

If the user decides to watch another video, he/she switches channel and this
causes thevideo switching delay, which is longer than that experienced in tradi-
tional television.

As for video playback continuity, each video chunk has a playback deadline.
Hence, if a certain video chunk is not in the buffer before itsplayback deadline, two
situations can occur. If there are no video chunks in the buffer of the player, the user
experiences freezing of the video, that is the playback of last video frame. If there
are some video chunks in the buffer, the player plays them back although they might
be not continuous: in this circumstance the user experiences skipping of the missed
chunk’s frames [4].

We now provide a glimpse at some specific attributes of the examined P2P sys-
tems, as can be inferred from local measurements. Next, their behavior and partly
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their performance will be discussed, with the help of the measures available at the
central facility.

5.1 Network edge measurements

This subsection focuses on measurements performed client-side, displaying some
of the features exhibited by PPLive, SopCast, as well as by aninstance of a small
P2P overlay.

The first measurements illustrate what transport protocol the different P2P stream-
ing systems adopt. Not all streaming architectures employ the same transport proto-
col: some of them exclusively utilize TCP, others UDP only, and others both. In the
latter case, the system typically uses TCP for control traffic and UDP to carry data
packets.

In order to know what kind of transport protocol a system relies upon, it is suf-
ficient to check how many TCP and UDP packets are exchanged among the local
peer and its partner nodes. The results we obtained for SopCast and PPLive are
graphically shown in Figs. 8 and 9 respectively. We can conclude that SopCast em-
ploys UDP to transport both video and control packets. In contrast, PPLive employs
UDP for data and TCP to carry control traffic. Unlike UDP, TCP guarantees reli-
able packet delivery and enforces congestion control: thisfirst feature is useful for
signaling traffic, but not for live video traffic, that has strict time restrictions.

Fig. 8 Number of UDP and TCP packets exchanged in a time window of 600 s by a SopCast peer
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Fig. 9 Number of UDP and TCP packets exchanged in a time window of 600 s by a PPLive peer

We now turn our attention to the P2P application throughput:to locally assess it,
we once more resort to local traffic captures, performed client-side. The values of the
upload and download throughput that PPLive achieves are graphically represented in
Fig.10 for an ADSL connection. As expected, the ADSL upstream and downstream
asymmetry directly reflects in the throughput values the P2Papplication exhibits.
To be accurate, the traffic exchanged by the local peer and captured to execute this
analysis contains not only video chunks but also control messages, useful to manage
peer’s partnerships, and, in particular, buffer maps. Yet,control packets represent a
far smaller percentage with respect to data.

There are no great differences between PPLive and SopCast, whose channels
have both a streaming rate of about 400 kbit/s, so we choose not to report the results
referring to the latter system.

Next measurements are concerned with the download throughput that the local
peer achieves via its best partners, i.e., the peers from which it receives more pack-
ets. The results obtained for PPLive are shown in Fig.11: this figure reports the total
throughput of the local peer, as well as the contributions provided by the best four
partners and by the best partner. We can observe that the local peer receives about
one third of the total chunks from the best four partners and much less from the
best partner. This suggests that in PPLive every peer has to connect to several other
peers, among which the chunk requests are equally allocated.

Until now, we have presented some results referring to largesystems, featuring
a vast group of users. However, there exist P2P live video streaming solutions be-
longing to the small overlay category, that are equally worth being investigated.
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We focus our attention on one of them, exhibiting a small number of peers and
providing only a few TV channels. Its client software is in the beta version and
the floor of users is therefore quite moderate. It still provides few channels and their
rate is around 160 kbit/s, with a resulting relatively low video quality. Privacy agree-
ments restrain us from diffusing the P2P provider name and the system architecture
details. However, we can say that it is a pure mesh-based P2P solution.

Here too, we take a look at a few interesting sets of local measures, namely:

- the number of partner nodes from which the peer receives data packets;
- the Cumulative Distribution Function (CDF) of the received packets’ length.

The first measurement is useful to understand how many peers cooperate with the
user to visualize the requested video. Fig.12 shows the result of this analysis. We can
see that in one hour of experiment there are on average 5 otherpeers, that provide
the local peer the desired data packets. At first, the peer receives data only from two
peers, one of which is the streaming server. Then, as it starts receiving buffer maps,
the local peer contacts more partners to request – and obtain– the chunks it needs.

The second experiment aims at providing an indicative characterization of traffic
the peer receives from and sends to the P2P network. Fig.13 graphically shows the
Cumulative Distribution Function (CDF) of the packet size,as derived from the
local data. We can observe that the CDF follows a bimodal distribution, underlining
two kinds of packets: large and small packets. The first ones convey data, have a
size larger than 1500 bytes and sum up to 40% of the total number of packets. The
second ones carry control information (conveying, e.g., buffer maps) and have a
length that ranges from approximately 60 to 200 bytes. Although derived for the

Fig. 10 Download and upload throughput of a PPLive peer
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Fig. 11 Total and partial download throughputs of a PPLive peer
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Fig. 12 Evolution of the number of peer’s partners in a small system

small P2P overlay, it is important to note that the bimodal distribution is typically
observed in large systems too.



18 Maria Luisa Merani and Daniela Saladino

5.2 System measurements

In this subsection we will comment some of the measurements that are typically
performed server-side. The examined systems will be CoolStreaming, PPLive and
the small P2P overlay considered earlier. The main reference sources will be [10]
for CoolStreaming and [17] for PPLive, as log-server tracesfor these systems are
not publicly available.

One of the most common measurements carried out on P2P video streaming sys-
tems is the number of peers joining/leaving the system and the number of peers con-
tributing in data streaming transmission evolution duringtime. Fig.14 qualitatively
reports a typical behavior for the number of simultaneous CoolStreaming users, as
reported in [10], during the peak hours between 06:00 and 11:00 PM. These results
underline the great scalability of the P2P solution, which easily supports more than
40,000 concurrent users.

This type of measurement has been performed on PPLive too [17]. The number
of peers for one of its popular television channels is qualitatively represented in
Fig.15. By observing the figure, we can say that the examined program reaches a
large number of concurrent users, about 2,700. Moreover, the peaks of the users
occur at 12 AM and 7 PM, suggesting that people tend to watch IP-TV outside
office hours [17].

As expected, the number of concurrent users in the system is tightly correlated to
the popularity of the program. For this reason, the authors of [17] have performed
the same measurements during the Spring Festival Gala on Chinese New Year too,
that is the most popular event in China. The results obtainedemphasize a sudden in-
crease of the users from 50,000 to 200,000 when the corresponding program starts,
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Fig. 13 Packet size CDF in a small system
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Fig. 14 Evolution of the number of simultaneous users in CoolStreaming from 18:00 to 23:00

and a sudden decrease when the program ends. Again, these observations suggest
that the P2P system scales well. An important feature, common to all P2P streaming
systems, is the following: when a TV program ends, peers immediately and simul-
taneously leave the network, so that a batch-departure occurs. This phenomenon is
not present in P2P systems for file sharing, where users depart at different instants
[17].

Fig. 15 Evolution of the number of simultaneous users in PPLive in a wholeday
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Fig. 16 Users geographic distribution in PPLive in a generic weekday

A large scale P2P streaming system typically attracts millions of users from all
over the world. Therefore, another relevant feature to monitor is the geographic
distribution of the users. This measurement requires a comparison between every
peer’s IP address and a database containing all the associations between ranges of
IP addresses and corresponding geographic areas. The results reported for PPLive
in [17] are shown in Figs. 16 and 17, that show the user geographic distribution
in a generic weekday and in the Spring Festival Gala day on Chinese New Year,
respectively. In Fig.16 we can see that the highest percentage of users are from
Asia. In Fig.17 the situation is a bit different: the percentage of users from outside
Asia is higher during this event, indicating that PPLive is able to attract hundreds of
thousands of users from all over the world when important events are broadcasted.

Classifying user connections on the basis of their upload capacity is a further,
useful distinction to perform. We can distinguish users into private, when their IP
addresses are not visible outside their own LAN, and public,when their IP addresses
are visible. If some peers have the same IP address, they are typically users behind

Fig. 17 Users geographic distribution in PPLive during the Spring Festival Gala
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a NAT device. By checking the user capacity to establish TCP connections a peer
can be further categorized as [10]:

- Direct-connect: peer with public address, that can establish partnershipsto and
from other peers;

- Universal Plug and Play (UPnP): peer with private address, that can establish
partnerships with other peers and the other peers can establish partnerships with
it;

- NAT: peer with private address, that the other peers cannot establish partnership
with;

- Firewall: peer with public address, that the other peers cannot establish partner-
ship with.

The CoolStreaming analysis performed in [19] provides the peers classification
shown in Fig.18. We notice that only a small percentage of thepeers are UPnP and
direct-connect nodes: they are 30% of the total and contribute with more than 80%
to the upload bandwidth [19]. On the other hand, there is a significant percentage
of users behind NAT devices, having limited uploading capacities. The remaining
small percentage represents peers that usually stay in the system for a short period
of time. Most of them are NAT/firewall peers [19]. We anticipate here that a similar
situation occurs in the small overlay we have examined.

Fig. 18 Peer classification in Coolstreaming

An additional system feature that is worth mentioning is thesession duration
time, i.e., the time that elapses between the join and the departure of the peer from
the system.

The results reported in [10] for the CoolStreaming system are shown in Fig.19,
where the qualitative distribution of the session durationis shown. We observe that,
once the users successfully obtain the video stream, they are stable and remain
within the system for the entire program duration [10]. But there are also many
short sessions, that depend on the startup failures of newlyjoined nodes.

Last parameter we comment upon is the start-up delay. Fig.20plots its Cumu-
lative Distribution Function (CDF) as reported in [10] for the native, pull-based
only CoolStreaming scheme, as well as for the new CoolStreaming, based on the
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Fig. 19 Distribution of sessions duration in Coolstreaming

hybrid push-pull architecture. It is immediate to concludethat, although the pull-
based system is simple and robust, the hybrid solution definitely exhibits a superior
performance.

Fig. 20 Start-up delay CDF in Coolstreaming
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In order to shed some light on how a small system works, we nextpresent and
discuss some measurements performed server-side on this kind of architecture. The
parameters that have been monitored are:

- the number of users in the weekday and during peak hours;
- the geographic distribution of the users;
- the percentage of free riders upon the total number of peers.

Fig.21 plots the number of users in system during a soccer match of the 2008
European Championship. The number of concurrent users remains fairly low until
about 14:00, it then increases reaching the peak (around 1300 peers) when the match
begins. This number progressively decreases at the end of the match. It is immedi-
ate to notice that the number of users of this small system is by far lower than in
CoolStreaming and PPLive.
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Fig. 21 Evolution of the number of peers during a very popular event ina small system

Next, Fig.22 represents the geographic distribution of theusers in this small over-
lay. We can observe that most of them are located in Europe, but there is also a non
negligible amount of U.S.A. nodes. The remaining percentage represents users from
the rest of the world.

A last, important feature that we take into consideration isthe presence of free
riders, without any distinction between nodes lying behinda NAT device or a fire-
wall. These peers do not contribute to the diffusion of the video stream, as they
receive chunks from others, without uploading anything. Free riders therefore rep-
resent a serious threat to the functionality of any P2P system. As Fig.23 shows, their



24 Maria Luisa Merani and Daniela Saladino

Fig. 22 Geographic distribution of peers in a small P2P system

number is significant in the small overlay, where their negative impact on perfor-
mance has to be properly limited. If no countermeasures are taken, the risk is to
unbearably degrade the QoE level that “good”, collaborative users expect.
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Fig. 23 Total number of users and free riders in a small system
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6 Modeling insights

Now that we have understood how P2P streaming systems work and how their be-
havior can be monitored, we shift our attention to some of themost significant con-
tributions in the field of modeling that recently appeared inliterature. The goal is
to delineate the effects on performance of the main system attributes: upload and
download capacity of the peers; classes of peers and their cardinality; buffering
available at peers and bearable play-back delay; free riders and churns that dynami-
cally and unpredictably spoil system equilibrium.

6.1 First modeling efforts

To begin with, we develop some simple considerations that help understand the
advantages of the P2P solution with respect to the traditional, centralized client-
server architecture.

Following [20] and more substantially [21], we investigatehow the server-side
capacityus needed to support a streaming rater to N identical users can be de-
creased, when each peer makes available a fractionη of its upload bandwidthbu to
the system.

In this simple, deterministic setting, we observe that

us = max [0,N(r−η ·u)] . (1)

The relation betweenN andus is depicted in Fig.24, forr = 700 kbit/s, an upload
bandwidthu = 400 kbit/s and for different values ofη , namely,η = 0.9,0.5 and 0.
From visual inspection, it is straightforward to conclude that when the P2P system is
well designed, a considerable saving is achieved in server capacity: as an example,
whenN = 2×104 peers populate the system,us can be decreased from 14 Gbit/s to
6.8 Gbit/s forη = 0.9.

Next, inevitable question is: how can the efficiencyη be computed?
To answer, we resort to [21]: the focus of this work is on P2P for file sharing,

rather than for video streaming, yet its analysis can be easily adapted to our case as
well. In details, this work assumes that the upload bandwidth of a peer will not be
utilized only if all of its partners already have the chunks of that peer: it follows that
the efficiencyη is

η = P[there is at least one peer that wants a chunk the peer has] . (2)

If K is the number of partner peers and the distribution of chunksbetween peers is
independent from peer to peer, and identical for all peers, then

η = 1−P[peer j needs no chunks from peer i]K (3)
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Fig. 24 Server capacity to supportN simultaneous viewers in the P2P architecture (η 6= 0) and in
the client server approach (η = 0)

We next denote byni the number of chunks that peeri possesses, out of theM
available for sharing in the peer buffer, and assumeni is uniformly distributed in
[0, . . . ,M−1]. We can therefore write:

P[peer j needs no chunks from peer i] = P[peer j has all pieces of peer i] =

= ∑M−1
n j=1

1
M ∑

n j
ni=0

1
M ·P[peer j has all chunks of peer i|ni,n j] =

= 1
M2 ∑M−1

n j=1 ∑
n j
ni=0

(

M−ni

n j −ni

)

(

M
n j

) = 1
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n j=1

(

M +1
n j

)

(

M
n j

) =

= 1
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n j=1
M+1

M+1−n j
= M+1
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1
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1
m (4)

having setm = M +1−m j.
Replacing last outcome inη expression, it can be concluded that

η = 1−

(

M +1
M2

)K

·

(

M

∑
m=2

1
m

)K

. (5)

The (K, η) relation, illustrated in Fig.25 for three different values of the buffer size
M, reveals that it is useless to increase the number of partnerpeersK above 5-10,
as efficiency has already reached unity. It also suggests that the number of available



Live Video and IP-TV 27

chunksM in the peers’ cache plays a significant role when determiningη : whenM is
large,η increases. On the other hand, when this number grows, the play-back delay
that the peer experiences also increases, a phenomenon thatneeds to be accurately
monitored. Interestingly 5−10 is deemed an adequate partner range for several of
the current P2P IP-TV applications.
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Fig. 25 Efficiency as a function of the parent group sizeK, for different values of the numberM
of available chunks in the peers’ buffer

6.2 More recent contributions

A deeper insight into the fundamental characteristics of P2P streaming systems that
rely upon a fully connected mesh is achieved in [22].

To understand its contribution, let us introduce some proper assumptions and
notations.

A fluid model is employed to describe the video stream that propagates from the
server at rater, and to describe the bits – as opposed to chunks – that propagate
among peers. The system initially examined is bufferless, i.e., bits are not cached in
the peer before being played back or before being copied to other peers.

Let N be the number of peers in the system and letui denote the upload bandwidth
of thei-th peer,i = 1,2, . . . ,N. When all peers in the system receive the video at rate
r, the system is said to guaranteeuniversal streaming.



28 Maria Luisa Merani and Daniela Saladino

The first result that is provided states that the maximum achievable streaming
rate,rmax, is given by

rmax = min

{

us,
us +∑N

i=1 ui

n

}

(6)

that impliesall peers contribute to the swarming process with theirentire upload
bandwidth (equivalently, the efficiencyηi is 1,∀ i, i = 1,2, . . . ,N).

For most real P2P systems, a useful reference is a two class model, where a user
can be classified as either a super peer or an ordinary peer: typically, the former has
a high-speed access, such as from a campus network, whereas the second utilizes
a residential, ADSL access: we assume all peers in either class exhibit the same
upload capacity. We denote byN1 andN2 the number of super peers and ordinary
peers, respectively, and byu1 andu2 their upload capacities. A further hypothesis is
thatu2 < r < u1.

It immediately follows from (6) specialized to the latter case, that universal
streaming can be achieved whenever the following inequality is satisfied:

r ≤ φ(N1,N2) = min

{

us,
us +N1u1 +N2u2

N1 +N2

}

(7)

Let us now examine in greater detail theφ(N1,N2) term.
Let peers of both classes join the system following a Poissonprocess, of rateλi,

i = 1,2, and indicate byµi, i = 1,2, the rate at which they leave. No hypothesis is
made about their sojourn times, that can be arbitrary. LetN1(t) andN2(t) indicate
the number of peers of the two classes in the system at timet: note that they are two
independent Poisson random variables [23].

Focusing on the second term inφ(N1,N2), which is the significant one for all the
cases of practical interest, we can compute the probabilityof achieving universal
streaming as

P

[

r ≤
us +N1(t)u1 +N2(t)u2

N1(t)+N2(t)

]

= P
[

N1(t) ≥ cN2(t)−u
′

s

]

, (8)

where
c =

r−u2

u1− r
and u

′

s =
us

u1− r
. (9)

Recalling thatN1(t) andN2(t) are independent Poisson random variables, hence
obey the following distribution,

fi(n) =
e−ρiρn

i

n!
with ρi =

λi

µi
and i = 1,2, (10)

a few passages lead to the conclusion that
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P[universal streaming] = F2(M)+
∞

∑
l=M+1

(

(1−F1(
⌈

cl −u
′

s

⌉

)+ f1(
⌈

cl −u
′

s

⌉

)
)

f2(l)

(11)
where

Fi(n) =
n

∑
l=0

fi(l) and M =

⌊

u
′

s

c

⌋

. (12)

Making use of (11), it is now possible to explore the achievable performance
of the P2P system. The work in [22] examines “small” overlay,with a number of
simultaneous peers in the proximity of 75, and a “large” overlay, whose number
of simultaneous peers are in the proximity of 7500. The considered rates arer = 3
units, u1 = 7 units andu2 = 1 units, to be interpreted, e.g., as 300, 700 and 100
kbit/s, respectively. The average sojourn times are set to1

µ1
= 1

µ2
= 30 minutes for

both classes; in the small overlayλ2 is set to 100 peers per hour, so thatρ2, the
average number of ordinary peers, turns out to be equal to 50;in the large overlay,
λ2 is set to 10000 peers per hour, leading toρ2 = 5000. In both scenariosλ1 is then
varied: in the proximity of 25 in the small system, near 2500 in the large one.

Having defined the probability of degraded service as

Pdegr = 1−P[universal streaming] , (13)

Fig.26 qualitatively reportsPdegr as a function of the ratioρ1
ρ2

, determined in [22] for
both a small and a large overlay, whenus = 7: this figure shows that in both systems
performance improves when the arrival rate of super peers increases (equivalently,
when theρ1

ρ2
ratio increases). It can further be observed that the P2P system with a

large population performs better, as the large overlay provides universal streaming
over a much wider range of system parameters: the physical justification behind
this behavior is that the departure of super peers has a confined effect in the large
overlay, whereas it can lead to a significant worsening in thesmall system.

The study also points out that when the system scales towardslarger dimensions,
the role of the server and its upload rateus become more and more marginal.

Once the assumptions of bufferless peers is removed, the analytical, closed-form
approach has to be abandoned in favor of numerical solutionsobtained via a sim-
ulation tool. The most salient outcome derived by the authors of [22] is that the
buffer introduction brings a remarkable improvement to system performance. For
instance, they observe that the large overlay previously examined, that achieved a
probability of degraded service equal to 0.5 at ρ1

ρ2
= 0.5, experiences aPdegr of ap-

proximately 0.05 when buffering is introduced. Moreover, a cache that can store 30
seconds of the video is already sufficient to exploit almost all the potential buffering
gain. Analogous results hold for the small overlay.

Finally, it is observed that buffering can even bring a larger improvement than
increasing the infrastructure server bandwidthus.

What is the limit of the analysis just described? Mainly the assumption that all
N peers are connected to each other and that all N-1 peers contribute with their
available content to the stream the remaining peer is viewing: definitely not what
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Fig. 26 Probability of failing to achieve universal streaming in a small and in a large overlay, as a
function of ρ1

ρ2
, whenλ2 = 100

happens in a real system, as we previously described. Being able of utilizing all the
peer upload bandwidth it is not only a matter of random fluctuations in the peer
numbers,n1(t) andn2(t)!

To mention only a few additional key elements, we observe that a successful
system behavior heavily depends on the scheduling algorithm employed by peers,
on the parents they rely upon, on the type of connections thatpeers experiment (they
can be fully visible or belong to the free rider class, meaning that they can download
content but do not contribute to the system with any upload bandwidth).

Yet, the main goal of [22] is to determine themaximum achievable streaming rate
rmax and correspondingly tie the evaluation of the probability of degraded service to
it, and as such, it represents a genuine effort.

There are a few, additional papers that deal with the performance evaluation of
P2P streaming systems. Although we do not have room to cite here all their out-
comes, yet we believe that they deserve a careful citation: [24] for the theoretical ef-
fort in finding heuristics with provable good performance; [18] for the mathematical
analysis that helps comprehend why the pull-based approachis so efficient in utiliz-
ing peer upload capacity; [25] for a model relying on stochastic graph theory, able
to capture the fundamental properties of the mesh-based systems. The interested
reader is strongly encouraged to enrich his/her knowledge through these excellent
references.
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6.3 A numerical comparison between mesh and multiple-trees

If we now abandon the analytical world and consider the simulative approach, an
interesting comparison between mesh-based and multiple tree-shaped overlays is
performed in [26].

In this work, the hypothesis that both systems share is the adoption of Multiple
Description Coding (MDC). For this technique, a video stream is divided into mul-
tiple substreams: each can be independently decoded and thequality of the received
video increases with the number of decoded substreams. Every peer can subscribe to
a different number of substreams, depending on its downloadbandwidth. The MDC
choice helps in counteracting the heterogeneity in peers’ bandwidth, and therefore
warrants a better bandwidth usage.

In the multiple tree approach, different substreams propagate via disjoint trees;
each peer can join different trees, subject to the constraint that it has to be an internal
node in only one tree, and has therefore to appear as a leaf in the remaining trees
of the overlay. Moreover, the trees have to be balanced and short, meaning that the
number of their internal nodes as well as their depth have to be comparable.

Proper rules are set to handle node arrivals and departures [26]: as an example, a
new peer is added as an internal node to the tree with the lowest number of internal
nodes; a new internal node is placed as a child for the node with the lowest depth
that can accept a new child or has a leaf child; when an internal node departs, the
subtree that was rooted in it tries to rejoin the tree as a whole, but if it does not
succeed, its constituent nodes independently rejoin the tree.

In the examined mesh-based approach, the content delivery mechanism is very
similar to the one BitTorrent adopts. A new peer contacts thebootstrapping node,
that replies providing a random subset of peers able to act asparents for the node;
connected peers have a parent-child relationship, like in the tree-based architecture.
Peers periodically indicate what video chunks they have available to their child peers
and in turn request – pull – chunks from their parents.

The packet scheduling aims at profitably utilizing the upload bandwidth that
peers make available to the mesh-based system; it also strives to guarantee an ade-
quate quality of the received video allowing for the reception of several substreams;
it finally guarantees a timely delivery of the requested video chunks.

The crucial difference between the two approaches, correctly outlined by the
authors of this paper, lies in the delivery process of the substreams. Whereas in
the multiple-tree overlay all chunks belonging to one substreamstatically follow
the same tree to propagate among peers, in the mesh overlay the delivery tree is
individually chosen for each chunk and isdynamically shaped as the chunk crosses
the network. This greatly helps at efficiently employing allthe available bandwidth
of the peers. In contrast, in the multiple tree overlay theremight be occurrences
where one of the internal peers does not have sufficient upload bandwidth “to feed”
all its child peers.

In terms of similarity between the two architectures, the first perspective that [26]
takes is to state that the superposition of multiple trees isessentially equivalent to
a mesh. Another similarity is that in both architectures video chunks follow a tree
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to reach their destination: it is manifest in the multiple-tree overlay, but even in the
mesh-based case it is possible to capture the snapshots of the per-chunk trees, i.e.,
of the delivery paths that each single video chunk follows [5]: these are indeed trees,
whose internal nodes are quite stable and whose depth is typically longer compared
to tree-based systems, mainly because of their dynamic formation. Additionally, the
per-chunk trees exhibit a high degree of correlation, sharing several internal links.

The content delivery mechanism of both push and pull-based architectures is nu-
merically examined in [26] by simulation: initially, 200 homogeneous peers with
symmetric upload and download bandwidths are considered, in a system that em-
ploys 20 substreams, each coded at a ratebwd = 80 kbit/s. Theaccess link band-
width of each peer is set equal toK × deg× bwd , whereK, K ≥ 0, is a tunable
parameter anddeg indicates the degree of each peer, i.e., the number of incoming
and outgoing connections the peer can support. Whendeg is the same for all peers,
K × bwd is the averageper-connection bandwidth. The physical topology underly-
ing the examined systems, as well as the adopted congestion control protocol, is
detailed in [26].

The study determines the percentage of bandwidth utilization over the entire sys-
tem and the average quality delivered to each peer: the first metric quantifies the
effects of the content bottleneck phenomenon, i.e., of the situation where a parent
peer does not possess any useful chunk to deliver to a particular child, even though
it has some upload bandwidth available, as well as the effects of a low link access
bandwidth at the peers; the second performance index is defined as the average num-
ber of substreams a peer receives during a session and gives an idea of the quality
of the received video.

The system bandwidth utilization is determined as a function of the average per
connection bandwidth,K×bwd : in the mesh-based system its behavior is practically
independent of the peers’ bandwidth, and it takes on high values, of the order of
0.95, revealing that the mesh always allows to fully leverage the upload bandwidth
that the peers make available to the system. In the multiple tree-based architecture,
when the average per-connection bandwidth is low, system utilization is poor: this
is caused by parent peers that cannot satisfyingly support all their downstream con-
nections in the trees; when the per-connection bandwidth ishigh, system utilization
is low too, although for a different reason: the content bottleneck phenomenon ap-
pears. In between these two extremes, satisfying values of bandwidth utilization are
achieved, that are however slightly lower – of the order of 0.9 – with respect to
the alternative system: they are obtained in the proximity of K = 1, i.e., when the
per-connection bandwidth is slightly higher than the the description bandwidthbwd .
Fig.27 illustrates in a qualitative manner this behavior.

Next, the behavior of the average received quality is investigated. As Fig.28 in-
dicates, the quality always increases with the per-connection bandwidth in the mesh
system, in a practically linear manner; in the multiple treeapproach, increasing the
per-connection bandwidth causes the average quality to reach the target value of
deg, but this limit is not trespassed.

It can be concluded that the mesh-system can fruitfully exploit any value of peer
bandwidth, delivering a proportionally higher quality.



Live Video and IP-TV 33

Fig. 27 The qualitative dependence of system bandwidth utilization on the average per-connection
bandwidth

When the number of peers that a chunk visits before reaching the destination
peer is computed, the simulations reveal that the average path length is longer in the
mesh-based approach, as expected.

When the effect of bandwidth heterogeneity among peers is taken into account,
both architectures display better utilization and quality.

In contrast, when the effect of the overlay size is examined,the study indicates
that the mesh successfully scales, whereas the bandwidth utilization and the quality
of the multiple tree approach gradually worsen. This can be explained by the fact
that with no changes in the degree, the depth of the trees increases.

As for the ability to cope with churns, this comparative study assumes that the
duration of the peer session is lognormally distributed, and that the peer interarrival
times obey a Pareto distribution, with properly set parameters [26].

It is observed that the path from source to individual peers is more stable in the
mesh, and that for both approaches the ancestor changing rate increases with peer
population, due to the fact that the average distance between peers increases with
peer population.

In conclusion, this numerical investigation provides useful insights when the
main focus is on bandwidth utilization and quality; with respect to these perfor-
mance metrics, its outcomes indicate that the mesh-based architecture consistently
achieves superior performance. However, the study only partially investigates the
delays introduced by the mesh architecture, a delicate issue, as also [7] and [18]
have evidenced.
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Fig. 28 The average received quality as a function of the per-connection bandwidth

7 Open issues and promising solutions

A wide, large-scale deployment of P2P architectures to distribute live video stream-
ing over the Internet still requires sound answers to several challenging questions:
we provide a brief “to-do list” in what follows.

On the QoS/QoE side, the scarce control that P2P systems haveon the quality
the viewers endure is undoubtedly an issue, mainly in highlydynamic environments.
This limit is intrinsic to the structure of the current Internet; nevertheless, it needs to
be adequately tackled in the light of commercial, pervasiveadoption of P2P-based
solutions.

Directly related to the QoE issue, there lies the necessity to decrease the start-
up delays, that are often in the order of several tens of seconds: definitely a new,
undesired experience for viewers of ordinary TV channels, that on the contrary often
and rapidly change channel. As [17] indicates, possible solutions to investigate are
network coding and redundant downloading. Another suggested approach requires
the employment of dedicated servers, that provide the videoat relatively low quality,
whereas the P2P overlay guarantees the high quality video [4]. When a peer joins
the system, it first – and quickly – receives the low quality stream from the server,
then begins to effectively employ the P2P network to obtain the video at a higher
quality.

Also, smaller playback lags are needed, to avoid the weird situation where the
frames that some peers view are minutes behind other peers. This calls for efficient
chunk scheduling techniques and more intelligent peering strategies.
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On the network side, a crucial point is represented by the impact that P2P traffic
has on ISP infrastructures: simple peer selection and random scheduling usually
place a significant burden on the underlying network, and peers are highly spread,
as the geolocalization analysis shows. Network-aware resource allocation within the
overlay should substantially help in relieving the strain.

Finally, users lying behind NAT and firewalls may not be able to contribute to
the system with their upload bandwidth: better NAT traversal schemes have to be
put into use; how to treat such users, what QoE they should receive is also an in-
teresting dilemma. The work in [3] suggests some simple schemes to improve the
overlay construction when peers lie behind a NAT: we report them in Fig.29. As
shown in Fig.29 (a), one of the peers could take on the responsibility of broadcast-
ing to all other users behind the NAT; alternatively, the incoming P2P traffic could
be confined, yet some redundancy be guaranteed, as Fig.29(b)summarizes.

Fig. 29 (a) A possible optimization scheme for NAT users; (b) An alternativesolution

On the measurement side, the remote monitoring of P2P systems is a further,
significant chapter: [27] represents a good example of how totrack playback con-
tinuity, start-up latency and playback lags in a network-wide manner relying upon
the harvesting of buffer maps. However, this is “only” passive monitoring: proactive
countermeasures are still to be devised, to assure and protect a satisfying viewing
experience.

We dot not have room to explore in detail all these interesting questions; rather,
we have intentionally decided to concentrate on a specific, promising instance of en-
hancement, that is, network coding. For doing so, we refer to[28] and [29], notwith-
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standing that there are several alternative approaches that are equally worth being
investigated.

The first step to understand the potential of network coding for P2P video stream-
ing was performed in [28], where a conventional pull-based P2P overlay was di-
rectly compared with the analogous one enhanced by the adoption of random net-
work coding. In the latter system, each video chunkb is further divided inton blocks
b = [b1,b2, . . . ,bn], each blockbi having a fixed sizek. When a video chunk has to
be transmitted to a peer, the parent, sayp, rather than sending the entire chunk,
choosesm blocks out of then within the chunk,m ≤ n, and a set of random coeffi-
cientsc1,c2, . . . ,cm in the Galois fieldGF(28), to produce one coded blockx of size
k:

x =
m

∑
i=1

cp
i ·b

p
i . (14)

As each coded block is a linear combination ofm original blocks, it is uniquely
identified by the coefficients of the combination. Then, the parent peerp transmits
the coded block, together with the coefficients of the linearcombination (a overhead
not to be underestimated).

As the session proceeds, a peer accumulates coded blocks from its parents and in
turn encodes blocks to forward to its child peers. The destination peerd can recover
the original video chunk as soon as it has receivedn linear independent coded blocks
x = [x1,x2, . . . ,xn], taking advantage of the following relation:

b = A−1 ·xT
, (15)

whereA is the matrix of the coding coefficients ofx (each row inA corresponds to
the coefficients of one coded block).

The decoding process becomes faster resorting to Gauss-Jordan elimination: now
the peer starts to decode a video chunk as soon as it receives its first coded block.
Moreover, if the peer receives a coded block that is linearlydependent on previously
received blocks, the elimination process provides an all zeros row; in turn, this event
triggers the discarding of the coded block, while the receiver keeps waiting for ad-
ditional data. In other words, there is no need of ana priori check on the received
blocks, to guarantee they are linear independent.

What the authors of the study in [28] observe is that the overlay with random
network coding is more resilient against network dynamics and achieves a better
bandwidth usage. This has to be ascribed to the finer granularity introduced by the
coding mechanism in the streaming process: the system unit is the coded block,
rather than the entire video chunk.

Also note that in this overlay a peer missing a video chunk maybe served by mul-
tiple randomly selected peers that have coded blocks of the same requested chunk.

Last remark becomes crucial for the design of the novel P2P streaming system
proposed in [29], and termedR2.

Here too, random network coding is confined within the singlechunk, for the
primary reason of reducing the number of blocks that the encoder has to manipulate,
therefore limiting its complexity.
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However, to enhance the probability of having different multiple sources for the
same video chunk, each contributing with its own coded block, this new system
employs a random push, rather than the explicit pull requests that are typical of
mesh-based systems, to drive the diffusion process.

In greater detail, it is the destination peer, sayd, that – very frequently – adver-
tises what its missing chunks are (rather than what its availability is), via its buffer
maps. Now any peerp that receives this information and possesses any of these
chunks can potentially act as one of the origins for that chunk. Indeed, the algo-
rithm states that, ifp possesses the chunk,p randomly decides whether to push out
one coded block of the chunk thatd is missing.

A video chunk is therefore truly served by multiple originating peers, and this
choice allows to take full advantage of the benefits random network coding brings
in. While the session proceeds, the receiving peer accumulates coded blocks from
different contributing peers into its local buffer; as in [28], it immediately starts the
progressive decoding process resorting to Gauss-Jordan elimination.

The reader is referred to [29] for the thorough description of R2 and of all its
characteristics and constituent algorithms.

The idea behind theR2 proposal is depicted in Fig.30, that helps to understand
how it departs from a traditional pull-based overlay, whoseconcept is shown in
Fig.31.

Fig. 30 The concept behindR2 and its adoption of network coding

As intuition also suggests, the newly proposed architecture allows the adoption
of much larger video chunks than pull-based overlays. This can be qualitatively ex-
plained observing that in a conventional system a missing video chunk is served
by one partner peer at a time. In contrast, a missing video chunk in R2 is typically
sent by multiple originating peers, and each of them selectsvia a proper algorithm
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Fig. 31 The concept behind a traditional pull-based mesh system

(i) which chunk to send; (ii) what coding coefficients to use.Equivalently, peers
collaborate, randomly and without any explicit knowledge of each other, to the re-
construction of each chunk.

Several additional assumptions are introduced in [29] and contribute to the sat-
isfying performance of the system: to cite a few, playback issynchronized, so as to
maximize the overlap of playback buffers in the peers; peersreceive buffer maps in
an extremely timely manner; when composing coded blocks, peers attribute higher
priority to video chunks close to the – common – playback deadline. As a conse-
quence, the study in [29] demonstrates thatR2, when properly tuned, outperforms
conventional P2P solutions: it significantly reduces the number of playback skips
in a streaming session, therefore achieving better playback quality; it quickly fills
buffers at the peers at start up time and it maintains them adequately filled during
the entire session, despite of peers’ departures and arrivals. On the negative side, the
new system has to be carefully tuned in terms of chunk and block size; it does imply
complex choices, such as the synchronization of peers; it mandates buffer maps to
be almost continuously exchanged and control messages to constitute a non negligi-
ble fraction of the entire traffic. Nevertheless, it truly represents the first step toward
a deeper understanding of the potential of random network coding in P2P overlays.
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