INTRODUZIONE AL VOICE OVER IP

Dr. Ing. Maurizio Casoni mcasoni@unimo.it

Dipartimento di Ingegneria dell'Informazione Università degli Studi di Modena e Reggio Emilia

WHY VOICE OVER PACKET NETWORKS?

- Voice traffic will be in the near future a small fraction of the total telecom traffic moved around the world
- Network operators are building high-capacity packet switched infrastructures
- By providing telephony on this infrastructure they lower costs

Toll by-pass

- •Usage of leased lines
- •Implemented in PBXs

Consolidation

- •Integration of voice and data
- •Effective sharing of BW
- •Some savings

Convergence

•Full mm integration

COMPARISON OF VOICE AND DATA NETWORKS GROWTH

•1998/2000: data networks increase 5 times

•2000/2005: data growth expected to increase 23 times

TECHNICAL ISSUES

- Before expecting a widespread deployment of Internet Telephony some issues must be solved
- ◆ Internetneeds to provide some assurance regarding QoS → mechanisms for providing QoS
- ◆ Control architectures and protocols are needed to locate users and manage calls (setup, tear down,...)
- ◆ Security mechanisms to provide authentication of users and confidentiality for conversation
- ◆ Mechanisms for charging (but QoS must be defined before customersare billed...)

VOICE OVER PACKET NETWORKS

Two main approaches

- New backbone from the "telephony world"
 - Voice over ATM
 - mechanisms for providing different QoS levels
 - AAL1, AAL2, AAL5
 - Voice over Frame Relay
 - Many proprietary implementations
- Existing Internet "data networking world"
 - VoIP
 - traditionally "store&forward"
 - QoS has not been considered a basic goal (best effort delivery system)

STANDARD BODIES

- IETF
 - RTP: audio & video transport
 - SIP and SDP
 - Megaco H.248
- ATM Forum
 - VTOA: Voice and Telephony over ATM
 - RMOA: Realtime Multimedia over ATM
 - MPOA: Multiprotocol over ATM
- ITU-T
 - H.323, H.248

APPLICATIONS

- Real Time
 - Interactive (two-way)
 - telephony
 - Streaming (one-way)
 - radio-TV broadcast (consumed live)
 - Recording (one-way)
 - replay (stored at the receiver)
- Non Real Time

Connection less

- Short transfers
 - e_mail
- Long transfers
 - large image retrieval

Circuit Switched

Connection Oriented Nets

TELEPHONY QoS REQUIREMENTS

- ITU-T G.114 specifies that one-way delay for voice
 - less than 25 ms without echo cancellers (RTT=50ms)
 - less than 150 ms with echo cancellers for good quality voice
 - less than 400 ms with echo cancellers for acceptable quality voice
 - above 400 ms unacceptable for most applications
- This is not valid for one-way streamed traffic
 - real audio streaming

INTERNET TELEPHONY ARCHITECTURE (1)

- Users have access to MM computers connected to Internet by LAN or ISP
- PC-to-PC architecture

INTERNET TELEPHONY ARCHITECTURE (2)

- Standard telephones to make an receive calls over Internet
- User calls an Internet telephony gateway located near a central office switch or local hub

FACTORS AFFECTING QoS

To transport audio over a NON guaranteed packet switched network, audio samples must be:

- Coded, with some form of compression
- Inserted into packets with
 - sequence numbers
 - creation timestamps
- Transported by the network
- Received in a playout buffer
- Decoded in sequencial order
- Played back

All real-time transport scheme use this scheme

FACTORS AFFECTING QoS

Barriers to the operation of previous schemes, requirements for:

- Codecs
- Bandwidth
- Delay and Jitter
- Losses

PERFORMANCE OF THE INTERNET

- Many studies have been carried on
- Hard task
 - Complexity and variability
 - Mainly based on PING (i.e. round trip time)
 - RTT is NOT one way delay
 - Delay is related to hop counts and number of autonomous systems crossed rather than geographical distance
 - Great variance of packet loss (<1% to 10%)
 - Within the home network RTT < 100 ms

PERFORMANCE OF THE INTERNET

Infocom and Globecom 2002:

"Despite heroine end-system efforts, the Internet (not IP!) is currently incapable of carrying real-time or delay-sensitive traffic"

OVERVIEW OF THE H.323 SYSTEM

- ITU-T has developed a series of recommendations to support multimedia (audio, video and data) communications in packet based networks
- The H.323 system:
 - describes types and functions of H.323 terminals and other devices and their interactions
 - minimally requires only an audio stream to be supported
 - is THE standard for IP telephony
 - currently the most widely implemented control protocol for VoIP
 - interoperability with ISDN and PSTN networks

ENVIRONMENT OF H.323

UNIFIED VIEW of the INTERNET TELEPHONY GATEWAYS

The Internet Gateway model must work both with "conventional" telephony protocol (ISDN User Part) and with packet telephony protocols (H.323)

THE INTERNET CALL PROCESSING LAYERED MODEL

	The DNC and W	/ED gunnart	oporat	iong		
The DNS and WEB support operations						
CHAT PROSESSING PROTOCOLS User protocols Support protocols						
L_7	H.323, Megaco	Voice/Video	Data	RTCP,		
	MGCP, SIP	RTP		NTP, SDP		
L_4	TCP/UDP	UDP	TCP UDP	TCP/UDP		
L_3	IP RSVP ICMP Data link and Physical Layers					
L_2 L_1						

COMPONENTS AFFECTING VOICE QUALITY

- Codec
 - Analog-to-digital conversion
 - Digital-to-analog conversion
 - Coding algorithm (signal distorsion)
- Transport Network
 - Loss
 - Delay
 - Jitter (delay may vary)

SPEECH CODECS (Coder/Decoder)

<u>Algorithm</u> <u>Bit Rate</u>

G.711 PCM 64 kbps

G.726 ADPCM 16,24,32,40 kbps

G.728 LD-CELP 16 kbps

G.729 CS-ACELP 8kbps

G.723.1 5.3/6.4 kbps

PCM: Pulse Code Modulation

ADPCM: Adaptive Differential PCM

LD-CELP: Low Delay Code Excited Linear Prediction

CS-ACELP: Conjugate Structure Algebraic CELP

SPEECH CODECS (cont.)

G.723.1	G.729	G.729A
5.3/6.4 kbps	8 kbps	8 kbps
30 ms	10 ms	10 ms
30 ms	10 ms	10 ms
7.5 ms	5 ms	5 ms
20/24 bytes	10 bytes	10 bytes
16	20	10.5
2200	3000	2000
	5.3/6.4 kbps 30 ms 30 ms 7.5 ms 20/24 bytes 16	5.3/6.4 kbps 8 kbps 30 ms 10 ms 30 ms 10 ms 7.5 ms 5 ms 20/24 bytes 10 bytes 16 20

Processing delay: 3-5 ms (G.728), 1 ms (G.726), 0.125 (G.711)

ENCODING OF AUDIO SAMPLES

- G.711 PCM
 - RTP payload is 160 bytes (160 samples every 20 ms)
- G.723.1
 - 5.3 kbps=20 bytes every 30 ms; 6.3 kbps=24 bytes every 30 ms
 - 4 bytes SID (Silence Insertion Descriptor) frames
- G.726
 - 16 kbps=40 bytes every 20 ms; 32 kbps=80 bytes every 20 ms
- G.728
 - 40 bytes every 20 ms
- G.729
 - 20 bytes (2 frames every 20 ms)
 - 2 bytes comfort noise frame

SAMPLE FORMAT (G.711)

- Total frame length
 - 206 bytes using PPP encapsulation (WAN)
 - actually 82.4 kbps per connection
 - 218 bytes using Ethernet encapsulation (LAN)
 - actually 87.2 kbps per connection
 - with silence suppression: roughly 40 kbps

PPP	IP	UDP RTP		G.711 payload	FCS
4	20	8	12	160	2

Ethernet IP		UDP RTP		G.711 payload	FCS
14	20	8	12	160	4

SOURCES OF FIXED DELAYS

- Processing delay
- Transmission delay
- Propagation delay
- Component delay

SOURCES OF VARIABLE DELAYS (JITTER)

- Delay due to transport network is non-deterministic in nature
 - Variable processing delay
 - busy router or switch will take longer to lookup the address table
 - Queuing delay
 - network congestion
- Poor network conditions: average packet delay and packet delay variance (jitter) are high (75-300 ms)
- With jitter some packets arrive early while others arrive late
- Receive buffers can hide jitter at the cost of additional delay but beyond the playout point packets are effectively lost

PACKET LOSSES

- IP networks do not guarantee delivery of packets
- Stringent delay requirements => TCP cannot be used
- Packet loss is unavoidable but can be compensated for by codec lossconcealment schemes
- While single packet losses are easily managed, loss bursts, like those by Internet, can remarkably degrade the voice quality
- Relation between voice quality and losses depends on the coding algorithm
 - Forward error correction schemes have been proposed
 - FEC introduces additional delays which may cause the recovered packet to arrive too late (then lost anyway)
 - FEC => receiver buffer depth of several packets
 - G.711 has an optional feature for Packet Loss Concealment (PLC)

DELAY VS. LOSS: QoS MAPPING

Unidirectional Internet delay and loss

TRADE-OFF: QUALITY SURFACE

- Any solution for packetized audio can be characterized by its required
 - bandwidth
 - end-to-end delay
 - computational complexity

SUMMARY OF VOICE QUALITY

HOW TO TEST VOICE QUALITY

There are different ways to measure voice quality

- Mean Opinion Score (MOS)
- Perceptual Speech Quality Measure (PSQM & PSQM+)
- Perceptual Evaluation of Speech Quality (PESQ)
- Measuring Normalizing Blocks (MNB)
- Perceptual Analysis Measurements System (PAMS)
- E-Model

MEAN OPINION SCORE (MOS)

- ITU P.800
- Test performed by people
 - difficult to do regularly
- Subjective measure of voice quality
- Score ranges from 5 to 1
 - Excellent = 5; Good = 4; Fair = 3; Poor = 2; Bad = 1
 - Toll quality ≥ 4
- An objective test method is required

TCP/IP NETWORKS

- ✓ No QoS guarantee
- ✓ "Best Effort" delivery system
- ✓ Indeterminate level of packet loss, delay, out-of-sequence
- ✓ Multimedia applications have pushed for proposals for QoS
 - Priority marking (DiffServ)
 - Service marking (IPv4 ToS)
 - Label switching (MPLS)
 - Integrated services/RSVP

GENERAL QOS STRATEGIES

- Implementing QoS means separate delay sensitive traffic such as VoIP from other data traffic
 - all traffic is carried within IP packets
 - guaranteed vs. differentiated QoS
 - ✓ IP precedence in routers, gateways
 - identify RTP traffic by means of UDP range
 - identify the physical port where VoIP enters the net
 - route VoIP traffic differently
- QoS on link-by-link basis
 - scheduling algorithms
 - buffer management schemes
- QoS on end-to-end basis
 - IntServ/RSVP
 - DiffServ

CONCLUSIONS

- Designing a VoIP network is not easy...
- Mantaining acceptable voice quality requires careful planning
 - coding algorithm
 - packet loss
 - transmission delay
 - jitter
 - $^{\text{$^{\circ}$}}$ acceptable = one way delay ≤ 150 ms and packet loss $\leq 2\%$
- QoS can be implemented
 - Accurate Internet service model
 - appropriate scheduling algorithm
- Many, many,...., many network tests are necessary to verify that required performance can be achieved

PROGRAMMA

- VoIP sulla rete GARR fra le sedi di Cesena, Modena e Bologna Franco Callegati, Università di Bologna
- Introduzione del VoIP nella rete di centralini dell'Università di Bologna
 - Valerio Mattioli, Università di Bologna
- Sperimentazioni di qualità di servizio su Internet CarlaRaffaelli, Università di Bologna
- IP Telephonyl 'integrazione dei servizi Alessandro Boschetti, VEM Sistemi
- Soluzioni per la convergenza video voce dati e la telefonia IP Cisco Systems
- Dalla voce su IP alla telefonia su IP NextiraOne Italia
- Misura della qualità di una rete VoIP Massimo Bruni, ATS

Dipartimento di Ingegneria dell'Informazione Università di Modena e Reggio Emilia

THANK YOU FOR YOUR ATTENTION

mcason@unimo .it

http://www.dii.unimo.it/casoni

... suggestions are welcome