Energy Consumption and Switching Schemes in Optical Networks

Prof. Ing. Maurizio Casoni and Dr. Matteo Fiorani

Dipartimento di Ingegneria "Enzo Ferrari"

Università degli Studi di Modena e Reggio Emilia

Outline

- 1) Energy consumption (ICT carbon footprint)
- 2) Telecom networks
- 3) IP over WDM
- 4) Optical Circuit Switching (OCS)
- 5) Optical Burst Switching (OBS)
- 6) Optical Packet Switching (OPS)
- 7) Hybrid Optical Switching (HOS)
- 8) All-opitcal HOS architecture
- 9) Optical/electronic HOS architecture
- 10) Control plane HOS (GMPLS and HOS control)
- 11) Energy consumption (P_cl, P_sf, P_oac, P_ampli)
- 12) Results (pwc + perf)

ICT Carbo

- Climate change is gaining increasing interest in our society in recent years.
- Today, nonrenewable energy resources, such as hydrocarbon energy, provide most of the energy demand (about 85% of primary energy electricity).
- The combustion of hydrocarbon materials releases large amounts of Green House Gases (GHG), a major cause of Global Warming.
- GHG emissions include: Carbon Dioxide (CO2), Methane (CH4), Nitrous Oxide (N2O), Fluorinated Gases -> measured in CO₂e.
- Global consultant "Gartner" estimated that in 2007 the total footprint of the ICT was 830 MtCO₂e, about 2% of the estimated total emissions from human activity released that year.

ICT Carbo

- The ICT GHG emissions are expected to grow 6% each year until 2020.
- By 2020 ICT is predicted to emit 1430 MtCO₂e.

ICT Carbo

ICT carbon footprint is given by: Telecom network Infrastructure + Data centers + PCs and peripherals.

Fig. 2.3 The global footprint by subsector

Telecom Ne

- The traffic volume of broadband telecom networks is expected to grow rapidly in the next years.
- As a consequence, increases the energy consumed by the telecom infrastructure.

tprint

 Energy efficiency becomes a main issue when designing new network solutions.

Telecom N

- Access networks:
- 1) connect end-users to the Central Office (CO) of service provider (few kilometers)
- 2) Usually tree topology
- Metro networks:
- 1) Metropolitan region (tens or hundreds of kilometers)
- 2) Usually ring topology
- Core networks:
- 1) Nationwide or global coverage (thousands of kilometers)
- 2) Usually mesh topology

Access No

- "Last mile" of the telecom network → high impact on power consumption because of its ubiquity.
- 1) Wireless solutions: Wi-Fi, Wi-Max, LTE ...
- 2) Fiber To The Node (FTTN):
 - xDSL (Digital Subscriber Line) use existing copper cable and include ADSL, ADSL2, ADSL2+, VDSL (26 Mbps), VDSL2 (250 Mbps), HDSL.
 - HFC (Hybrid Fiber Coaxial) use fiber from CO to a Remote Node (RN) and coaxial fiber from node to end-user.

Access No

3) Fiber To The Home (FTTH):

- Passive Optical Networks (PON)
 - → EPON (IEEE 802.3ah) and GPON (ITU-T G.984)
 - → 10G-EPON (IEEE 802.3av) and XGPON (ITU-T G.987)
 - → LR-PON (up to 100km)
- Point-to-Point optical connection (1G, 10G).

Access No

- VDSL2 is the most efficient FTTN solution
- FTTH solutions consume much less power than FTTN solutions
- PONs are the most efficient solution when the number of subscribers is low
- When the number of subscribers is high the point-to-point solutions are more efficient than PONs

Metro Net

- SONET/SDH aggregate low-bit-rate traffic flows into high-bandwidth optical pipes using SONET/SDH ADMs (Add and Drop Mux).
- Metro Ethernet Layer 2 or/and Layer 3 Ethernet switches or/and routers connected through optical fiber
- Optical WDM Ring employs OADMs (Optical Add and Drop Mux) to add and drop optical signals directly in the optical domain.

Metro Net

- Power consumption:
 - SONET ADM (Ciena CN 3600 Intelligent Multiservice switch
 - Ethernet switch (Cisco Catalyst 6513 switch)
 - OADM (Ciena Select OADM)

2100 W

3210 W

450 W

Ciena CN 3600

Cisco Catalyst 6513

Ciena Select OADM

Optical WDM Ring: is expected to have the highest power efficiency

Core Netv

- High impact on power consumption because it carries capacity of several tens or hundred of Tbps.
- IP over DWDM (Dense Wavelength Division Multiplexing):
- → DWDM: the optical fiber is divided into multiple independent wavelength channels.
- → Today up to 96 wavelength channels per fiber. Each channel run at 40 Gbps (soon 100 Gbps).
- → Overlay model: IP layer and optical layer.
- → Control plane (e.g. MPLS) to integrate IP and optical layers.

IP over D

Traditional IP over WDM implementations rely on electronic nodes.

- Transmission in the optical domain
- Switching and control information processing in the electronic domain
- Data are O/E/O converted at each node along the path
 - → The optical layer provides lightpath (high capacity optical pipes)
 - → The IP layer performs routing and forwarding decisions
 - → Traffic grooming: many low bit-rate flows are multiplexed on the same lightpath

Electronic

Advantages:

- High performance (negligible data losses using efficient scheduling algorithms)
- High bandwidth utilization (statistical mux)
- QoS and traffic engineering policies

Drawback:

- Power consumption (up to 1 MW per node)
- Low scalability (power consumption a increases linearly with the bit-rate)

To decrease power consumption

Optical switching solutions

Optical switching:

- Transmission and switching in the optical domain
- Control information processing in the electronic domain

Optical St

Advantages:

- Low power consumption
- High scalability
- No need for O/E/O conversion in the core network

Drawbacks:

Lack of optical buffering solutions (No optical RAMs)

Fiber Delay Lines (FDLs):

- → Data cannot be accessed at any time but only after fixed intervals
- → Large physical size that limits the storage capacity (for 10 Gb → 50000 km)
- Lower performance (non negligible data losses)
- Difficult to implement QoS and traffic engineering policies

Optical Ci

- Edge node: located at the periphery of the network are used to connect to metro/access networks
- Core node: route data from ingress to egress edge nodes
- Two-way reservation mechanism: control packet sent on dedicated control channels

Optical Cir

Edge node architecture:

- Data are buffered until the lightpath has been established
- If the lightpath establishment fails no data is lost

Optical Ci

Advantages:

- ✓ High reliability: based on mature optical technology
- ✓ Low power consumption: using slow optical switches (MEMS)
- ✓ Fits large and stable traffic flows: suitable for multimedia applications

Drawbacks:

- Low bandwidth utilization with bursty source: not suitable for short and high variable traffic
- Low network flexibility: not easily adaptable to new applications services
- Today:

Optical Bypass

tegrates electronic switching and OCS

- Data are gathered at the edge node and assembled into bursts
- One-way reservation mechanism:
 - > control packet sent on dedicated control channels
 - burst sent after a fixed delay (offset-time)

Edge node architecture:

Select the assembly queue:

- 1) Destination node
- 2) Class of service

Queue discipline:

- 1) Per flow
- 2) Mixed flow

Assembly algorithms:

- 1) Timer based
- 2) Length based
- 3) Mixed timer/length

- Reservation mechanisms:
 - 1) Just-In-Time (JIT) immediate setup and explicit release
 - 2) Just-Enough-Time (JET) delayed setup and implicit release
- Contention resolution techniques:
 - 1) Time domain -> use optical buffers (FDLs)
 - 2) Wavelength domain -> use all-optical wavelength converters
 - 3) Space domain -> data is transmitted over an alternative route (deflection routing)
 - 4) Segmentation -> only the conflicting part of the burst is dropped

- Using JET the core nodes must implement burst scheduling
- Trade-off: efficiency VS processing time
- Scheduling algorithms:
 - 1) Horizon
 - 2) First-Fit Unscheduled Channel with Void Filling (FFUC-VF)
 - 3) Best-Fit with void filling (BF-VF)

Advantages:

- ✓ High bandwidth utilization (statistical multiplexing)
- ✓ No need for optical buffers (FDLs)
- ✓ Low power consumption

Drawbacks:

- ★ High burst blocking probability, that can be solved only with expensive and power consuming techniques
- ★ High complexity of the control logic

Optical Pa

- The resources are reserved on-the-fly using the optical packet header
- Packet header and payload are separated by a time guard

Optical Pa

Edge node architecture:

Optical Pa

Advantages:

- ✓ Very high bandwidth utilization (statistical multiplexing)
- ✓ High network flexibility (suites perfectly IP data traffic)

Drawbacks:

- ➤ Need for optical buffers (FDLs)
- **B** Based on immature and expensive optical components

Hybrid On

- Integrates on the same network: OCS + OBS and/or OPS
- Large and stable traffic flows (e.g. multimedia traffic) are carried over circuits or long bursts
- Short and dynamic traffic flows (e.g. IP data traffic) are carried over packets or short bursts
 - ✓ High bandwidth utilization -> packets/bursts can fill unused slots of circuits with the same destination
 - Low power consumption -> using hybrid switches that combine slow switching elements for circuits/long bursts and fast switching elements for packets/short bursts
 - ✓ High network flexibility -> each new application or service can be served using the more suitable switching scheme for it

Hybrid Or

Network overlay model:

GMPLS

- Generalized Multiprotocol Label Switching (GMPLS): set of protocol for routing, signaling and link management
- Routing:
 - → Exchange routing informations among the nodes
 - → Protocols: OSPF or IS-IS with Traffic Engineering (TE) extension
 - → OSPF-TE: collect info about the links state and usage (in terms of bit/s), and flood the info using the Link State Advertisements (LSA)

• Signaling:

- → Establishes and maintains the Label Switched Paths (LSP)
- → Protocols: RSVP with TE extension or CR-LDP

Link Management:

- → Link provisioning, fault isolation, maintenance of the associations between link and labels
- →Protocols: LMP

GMPLS

- The edge node performs IP lookup and assigns each packet to a Forwarding Equivalence Class (FEC)
- Path Computation Engine (PCE) determines the path toward the destination basing on the information collected by the routing protocol
- If a LSP toward the destination exists and has enough bandwidth, data is transmitted through this LSP; Otherwise a new LSP is created using the signaling protocol (es. RSVP-TE)

HOS Cont

- The HOS control plane performs <u>resource reservation</u> and <u>data scheduling</u>
 - Circuits:
 - Two-way reservation mechanism
 - High priority
 - Bursts:
 - One-way reservation mechanism (JIT or JET)
 - Scheduling algorithm (Horizon, FFUC-VF, BF-VF)
 - Different level of priority basing on the offset time
 - Packets
 - Best effort
 - Core nodes can fill unused slots of circuits with optical packets with the same destination
 - Coding technique: in-band or out-of-band reservation mechanism

Electronic

Juniper T series TX Matrix Plus 6.4 Tbps

Alcatel-Lucent 1870 Transport Tera Switch 8 Tbps

Cisco CRS (Carrier Routing System) - 3 Up to 322 Tbps

"The Cisco CRS-3 triples the capacity of its predecessor, the Cisco CRS-1 Carrier Routing System, with up to 322 Terabits per second, which enables the entire printed collection of the Library of Congress to be downloaded in just over one second; every man, woman and child in China to make a video call, simultaneously; and every motion picture ever created to be streamed in less than four minutes"

Electronic n

- Building blocks:
 - → Control logic
 - → Switching fabric
 - → Optical WDM interface

Electronic

- Control logic:
 - → MPLS control plane functionalities
 - Off-line operation: Routing (OSPF-TE, IS-IS-TE), Signaling (RSVP-TE, CR-LDP),
 Link Management (LMP)
 - On-line operation: label processing, table lookup and forwarding
 - → Switch control
 - Setup the path through switch
 - → Route processor card
 - One route processor card every 16 wavelength channels

Cisco CRS-1 16-Slot Line Card Chassis Route Processor

Electronic

- Switching Fabric:
- → Fast CMOS-based electronic switch
 - Switching time in the order of nanoseconds
 - Multi-stage architecture

→ Electronic line card

WDM transceivers, PHY (physical layer) devices, framers/mappers, MAC chips, a traffic processor/forwarding, engine (TP/FE), memory devices, and fabric interfaces.

Optical WD

- → WDM channel multiplexer and demultiplexer
- → Optical amplifiers (OA)
 - Two optical amplifiers per fiber channel
 - Compensate the loss introduced by the core node
 - Erbium Doped Fiber Amplifier (EDFA)
- → Control information extraction and re-insertion (CIE/R)
- → Tunable Wavelength Converter (TWC)
 - One TWC per wavelength channel

Hybrid nod

- Building blocks:
 - → Control logic
 - → Switching fabric
 - → Optical WDM interface
- Switching fabric:
- → Slow optical switch
- → Fast electronic switch
- Tunable Wavelength Converter (TWC)

Hybrid node

- → GMPLS control plane:
 - Off-line operation
 - On-line operation
- → Scheduler:
 - Large programmable logic device (FPGA)
- → Search engine:
 - Ternary content addressable memory (TCAM)

- → Switch control
 - Setup the path through either the slow optical switch or the fast electronic switch

Hybrid nod

- Switching fabric:
- → The fast electronic switch is used to forward packets and short bursts
- → The slow optical switch is used to forward circuits and long bursts
- → MEMS Micro electro-mechanical systems
 - Miniature movable mirrors made in silicon
 - Transmit or deflect optical signal depending on the position
- → Why MEMS:
 - It is possible to build switching fabrics of large size (up to 1000×1000)
 - Low power consumption
- → Drawback of MEMS:
 - Switching time is in the order of milliseconds

Optical nod

- Building blocks:
 - → Control logic
 - → Switching fabric
 - → Optical WDM interface
- Control logic:
- → The scheduler relies on optical buffers

Optical nod

- Switching fabric:
- → The slow optical switch is used to forward circuits and long bursts
- → The fast optical switch is used to forward packets and short bursts
- → SOA Semiconductor Optical Amplifiers
 - Switching capacity in the order of nanoseconds
- → Drawback of SOAs →small size
 - SOA must be organized in complex multi-stages networks

- → Three-stages Clos network
 - Each element of one stage is connected to each element of the next stage
 - Strictly non-blocking if: p ≥ 2n 1

Optical nod

- → Each element of the Clos network is organized in a Spanke architecture
- → Each element of the Spanke network is a 1×2 SOA switch

- → This architecture require also:
 - 1 Temperature Stabilization Circuit (TEC) every switching elements of the Clos network (Total number of TECs: 2k+p)
 - 1 3R-Regenerator after 9 SOAs (OSNR > -20 dB)

- Consider a core node with N input/output fibers and W wavelengths per fiber
- Power consumption of the core node P_{Node}:

$$P_{Node} = P_{CL} + P_{SF} + P_{OI}$$

 P_{CL} = Power consumption of the control logic

 P_{SF}^{CL} = Power consumption of switching fabric P_{OI} = Power consumption of the optical WDM interface

→ Electronic
$$P_{CL} = \frac{N \cdot W}{16} \cdot P_{RP}$$

P_{RP} = Power consumption a route processor card = 200 W

Hybrid and Optical:

$$P_{CL} = P_{GMPLS} + P_{Scheduler} + N \cdot W \cdot P_{Transceiver}$$

P_{Scheduler} = One large programmable logic device (FPGA) per data type = 40 W P_{Transceiver} = Long reach WDM transceiver = 1.25 W

$$P_{CL} = P_{Offline} + N \cdot P_{online} + N \cdot W \cdot P_{SearchEngine}$$

P_{Offline} = Microprocessor, network interface, DRMA = 150 W P_{Online} = Large programmable logic device (FPGA) = 40 W

P_{SearchEngine} = Ternary Content Addressable Memory (TCAM) = 4.5 W

Switching F

→ Electronic SF

$$P_{SFperPort} = P_{LC} + P_{Switch}$$

 P_{LC} = Power consumption of a line card = 298.3 W P_{Switch} = Power consumption of the CMOS switch per port = 8 W

→ MEMS:

$$P_{SFperPort} = P_{MEMS}$$

 P_{MEMS} = Power consumption of a 3D MEMS = 0.1 W

→ SOA:

$$P_{SFperPort} = N_{SOA} \cdot P_{SOA} + N_{TEC} \cdot P_{TEC} + N_{3Rreg} \cdot P_{3Rreg}$$

P_{SFperPort} = Power consumption of the SOA-based switch = 19.9 W

Optical Inte

$$P_{OI} = 2 \cdot N \cdot P_{OA} + N_{TWC} \cdot P_{TWC} + N \cdot W \cdot P_{CIE/R}$$

 $\begin{array}{l} P_{\text{OA}}\!=\!\text{Power consumption of an EDF optical amplifier}=\;14\;W\\ P_{\text{TWC}}\!=\!\text{Power consumption of an all-optical tunable wavelength converter}=\;1.69\;W\\ P_{\text{CIE/R}}\!=\!\text{Power consumption of the control information extraction and re-insertion block}=\;17\;W \end{array}$

→ WDM Mux and WDM Demux do not consume power