Switching Schemes in Optical Networks

Matteo Fiorani

Department of Engineering "Enzo Ferrari" University of Modena and Reggio Emilia

Matteo Fiorani Lecture, UNIMORE, 29 April 2013

- 2) Metro networks
- 3) Core networks
- 4) Data center networks

Telecom Network Domains

Access/Backhaul networks

connect end-users to the Central Office (CO) of service provider (few kilometers)

Metro networks
Metropolitan region
(tens or hundreds of kilometers)

• Core networks:

Nationwide or global (thousands of kilometers)

▹ Wireless

Advantages: Mobility / Ubiquity / Easy deployment Drawbacks: Low energy efficiency

> Copper

Advantages: Low cost / High reliability Drawbacks: Limited capacity / Low energy efficiency / No mobility

Fiber

Advantages: Almost unlimited data rate / High reliability / High energy efficiency Drawbacks: High cost / No mobility

- Wireless

Long Term Evolution (LTE)
Wi-Fi
WiMax
Microwave (6 – 42 GHz)

Matteo Fiorani Lecture, UNIMORE, 29 April 2013

> Wireless

LTE (Long Term Evolution)

- Improvements: higher data rates, improve spectral efficiency, reduce network latency, support flexible channel bandwidths, simplify and flatten the network by utilizing an all-packet (Ethernet/IP) architecture.
- Components:

1) EnodeB

2) Serving Gateway (SGW)

3) Packet data network gateway (PDN GW)4) Mobile gateway (MGW)

▹ Wireless

- <u>LTE (Long Term Evolution)</u>
 - SOFDMA (Scalable Orthogonal Frequency Division Multiple Access).
 - MIMO (Multiple Input Multiple Output).
 - Heterogeneous network deployment.

Wireless Capacity Requirements								
	Voice Spectrum (MHz)	Data Spectrum (MHz)	Voice Spectral Efficiency (bit/s/Hz)	Data Efficiency (bit/s/Hz)	# Sectors	Traffic Eng % Peak	Total Bandwidth (Mbps)	#T1s
GSM 2G	1.2		0.52		3	70%	1.3	1
GSM / Edge 2.75G	1.2	2.3	0.52	1	3	70%	6.1	4
HSDPA 3G		5	0	2	3	70%	21.0	14
LTE 4G		5	0	3.8	3	70%	39.9	n/a
LTE 4G		10	0	3.8	3	70%	79.8	n/a

> Wireless

- <u>Wi-Fi</u>
 - IEEE 802.11 a,b,g,n.
 - Frequency bands: 2.4 GHz 5 GHz.
 - IEEE 802.11n maximum data rate up to 600 Mbps.

> Wireless

• <u>WiMax</u>

Matteo Fiorani

- IEEE 802.16
- The standards allow operation in any band from 2 to 66 GHz.
- IEEE 802.11m-2011 maximum data rate up to 1 Gbps.

▹ Wireless

- Microwave (6 42 GHz)
- Cellular backhaul
- Connect each cellular base station site to a hub (Multi-Service Operator - MSO) that is in turn connected to the metro network.
- Star, tree-and-branch, ring topologies.

-> Copper

Digital Subscriber Line (DSL) Hybrid Fiber-Coaxial (HFC)

Matteo Fiorani Lecture, UNIMORE, 29 April 2013

-> Copper

- DSL (Digital Subscriber Line)
 - DSL is provided through copper pairs originally installed to deliver a fixed-line telephone service
 - Include: ADSL, ADSL2, ADSL2+ (24 Mbps downstream 1 Mbps upstream), VDSL (26 Mbps), VDSL2 (250 Mbps).

-> Copper

- HFC (Hybrid Fiber-Coaxial)
 - Cable distribution networks were initially deployed to deliver television services.
 - Use fiber from Headend office to a remote Node and coaxial link from node to end-users.

→ Fiber

Passive Optical Networks (PON)
Point-to-point Ethernet

Matteo Fiorani Lecture, UNIMORE, 29 April 2013

-> Fiber

- PON (Passive Optical Networks)
- Components:
 - 1) Optical Line Terminal (OLT)
 - 2) Optical Networking Unit (ONU)
 - 3) Passive optical splitter
- Downstream: broadcast from OLT to ONU.
- Upstream: the OLT assigns the turns to the ONU using a Dynamic Bandwidth Assignment (DBA) algorithm.
 - EX: Interleaved Polling with Adaptive Cycle Time (IPACT)

-> Fiber

- PON (Passive Optical Networks)
 - 1) EPON (IEEE 802.3ah) and GPON (ITU-T G.984)
 - 2) 10G-EPON (IEEE 802.3av) and XGPON (ITU-T G.987)
 - 3) Wavelength Division Multiplexing PON (WDM-PON)
 - 4) Orthogonal Frequency Division Multiple Access PON (OFDMA-PON)
 - 5) Long Reach PON (LR-PON)

LR-PON

WDM-PON

-> Fiber

Point-to-point Ethernet

- Uses optical Ethernet switches to distribute the signal to end users.
- The Ethernet switch is powered and employs electronic buffers to avoid collisions in upstream and downstream.

1) SONET/SDH

2) Metro Ethernet

3) Optical WDM link

Matteo Fiorani Lecture, UNIMORE, 29 April 2013

Metro Networks

SONET/SDH

1) Aggregate low-bit-rate traffic flows into highbandwidth optical pipes using SONET/SDH ADMs (Add and Drop Mux).

2) Advantages:

a) each of the aggregated flow can be retrieved without de-multiplexing the entire frame,

b) control info for fast network recovery.

3) Drawbacks: Coarse bandwidth granularity and high energy consumption

SONET ADM (Ciena CN 3600 Intelligent Multiservice Switch)

Metro Networks

Metro Ethernet

1) Metropolitan area network (MAN) that is based on Ethernet standards.

2) Advantages:

a) An Ethernet interface is much less expensive than a SONET/SDH interface of the same bandwidth.

b) Ethernet supports high bandwidths with fine granularity.

3) Drawbacks: very power consuming.

Metro Networks

1) Optical WDM Ring employs OADMs (Optical Add and Drop Mux) to add and drop optical signals directly in the optical domain.

2) Advantages:

- a) very high capacity,
- b) low energy consumption.
- 3) Drawbacks: coarse granularity and high costs.

• DWDM: the optical fiber is divided into multiple independent wavelength channels.

• Today up to 96 wavelength channels per fiber. Each channel run at 40 Gbps (soon 100 Gbps).

• Overlay model: IP layer and optical layer.

• Control plane (e.g. MPLS) to integrate IP and optical layers.

<u>IP over WDM</u> (Wavelength Division Multiplexing):

- Electronic switching
- Optical switching:
 - 1) Optical Circuit Switching (OCS)
 - 2) Optical Burst Switching (OBS)
 - 3) Optical Packet Switching (OPS)

- > IP over WDM with electronic switching
- Transmission in the optical domain
- Switching and control information processing in the electronic domain
- Data are O/E/O converted at each node along the path
 - The optical layer provides lightpath (high capacity optical pipes)
 - The IP layer performs routing and forwarding decisions
 - Traffic grooming: many low bit-rate flows are multiplexed on the same lightpath

Matteo Fiorani Lecture, UNIMORE, 29 April 2013

> IP over WDM with electronic switching

> IP over WDM with electronic switching

Juniper T series TX Matrix Plus 6.4 Tbps

Alcatel-Lucent 1870 Transport Tera Switch 8 Tbps

Cisco CRS (Carrier Routing System) - 3

Up to 322 Tbps

"The Cisco CRS-3 triples the capacity of its predecessor, the Cisco CRS-1 Carrier Routing System, with up to 322 Terabits per second, which enables the entire printed collection of the Library of Congress to be downloaded in just over one second; every man, woman and child in China to make a video call, simultaneously; and every motion picture ever created to be streamed in less than four minutes"

IP over WDM with electronic switching

Advantages:

- High performance (negligible data losses using efficient scheduling algorithms)
- High bandwidth utilization (statistical mux)
- QoS and traffic engineering policies

Increased Bit Rate per Wavelength

Drawbacks:

- Power consumption (up to 1 MW per node)
- Low scalability (power consumption increases linearly with the bit-rate)

Bits per Task

Matteo Fiorani Lecture, UNIMORE, 29 April 2013

> IP over WDM with optical switching

To decrease power consumption

Optical switching solutions

Optical switching:

- Transmission and switching in the optical domain
- Control information processing in the electronic domain

Optical switching in IP over WDM networks:

- Optical Circuit Switching (OCS)
- Optical Burst Switching (OBS)
- Optical Packet Switching (OPS)

> IP over WDM with optical switching

Advantages:

- Low power consumption
- High scalability (energy consumption does not increase significantly with the bit-rate).
- No need for O/E/O conversion in the core network

Drawbacks:

Lack of optical buffering solutions (No optical RAMs)

Fiber Delay Lines (FDLs):

- Data cannot be accessed at any time but only after fixed intervals
- > Large physical size that limits the storage capacity (for 10 Gb \rightarrow 50000 km)
- Lower performance (non negligible data losses)
- Difficult to implement QoS and traffic engineering policies

- > IP over WDM with optical switching
- Edge node: located at the periphery of the network are used to connect to metro/access networks

- > IP over WDM with OCS
- Control information are sent over dedicated wavelengths (out-of-band signaling).
- Two-way reservation mechanism: the source edge node waits for the acknowledgment from the destination edge node before starting data transmission.

> IP over WDM with OCS

OCS edge node architecture:

- Data are buffered until the circuit has been established
- If the circuit establishment fails no data is lost

- > IP over WDM with OCS
- OCS core node architecture:

- > IP over WDM with OCS
 - Switching fabric:
 - → MEMS Micro electro-mechanical systems
 - Miniature movable mirrors made in silicon
 - Transmit or deflect optical signal depending on the position
 - → Why MEMS:
 - It is possible to build switching fabrics of large size (up to 1000×1000)
 - Low power consumption
 - → Drawback of MEMS:
 - Switching time is in the order of milliseconds

> IP over WDM with OCS

Advantages:

- ✓ High reliability: based on mature optical technology
- ✓ Low power consumption: using slow optical switches (MEMS)
- ✓ Fits large and stable traffic flows: suitable for multimedia applications

Drawbacks:

- Low bandwidth utilization with bursty source: not suitable for short and high variable traffic
- Low network flexibility: not easily adaptable to new applications services
- Today:

integrates electronic switching and OCS

Matteo Fiorani Lecture, UNIMORE, 29 April 2013

- > IP over WDM with OBS
- Data are gathered at the edge node and assembled into bursts
- Out-of-band signaling
- One-way reservation mechanism: burst sent after a fixed delay (offset-time)

> IP over WDM with OBS

OBS edge node architecture:

> IP over WDM with OBS

- > IP over WDM with OBS
 - Switching fabric:
 - SOA Semiconductor Optical Amplifiers
 - > Switching capacity in the order of nanoseconds
 - > Drawbacks of SOAs :
 - must be organized in complex multi-stages networks
 - higher energy consumption than MEMS

- > IP over WDM with OBS
 - Reservation mechanisms:
 - 1) Just-In-Time (JIT) immediate setup and explicit release
 - 2) Just-Enough-Time (JET) delayed setup and implicit release
 - Contention resolution techniques:
 - 1) Time domain: use optical buffers (FDLs)
 - 2) Wavelength domain: use all-optical wavelength converters
 - 3) Space domain: data is transmitted over an alternative route (deflection routing)
 - 4) Segmentation: only the conflicting part of the burst is dropped

- > IP over WDM with OBS
- Using JET the core nodes must implement burst scheduling
- Trade-off: efficiency VS processing time
- Scheduling algorithms:
 - 1) Horizon
 - 2) First-Fit Unscheduled Channel with Void Filling (FFUC-VF)
 - 3) Best-Fit with void filling (BF-VF)

> IP over WDM with OBS

Advantages:

- ✓ High bandwidth utilization (statistical multiplexing)
- ✓ No need for optical buffers (FDLs)
- ✓ Low power consumption

Drawbacks:

- High burst blocking probability, that can be solved only with expensive and power consuming techniques
- High complexity of the control logic

- > IP over WDM with OPS
- The resources are reserved on-the-fly using the optical packet header (in-band signaling)
- Packet header and payload are separated by a time guard

> IP over WDM with OPS

OPS edge node architecture:

> IP over WDM with OPS

> IP over WDM with OPS

Advantages:

- ✓ Very high bandwidth utilization (statistical multiplexing)
- ✓ High network flexibility (suites perfectly IP data traffic)

Drawbacks:

- Need for optical buffers (FDLs)
- Based on immature and expensive optical components

- » IP over WDM with <u>Hybrid Optical Switching</u>
 - Integrates on the same network: OCS + OBS and/or OPS
 - Large and stable traffic flows (e.g. multimedia traffic) are carried over circuits or long bursts
 - Short and dynamic traffic flows (e.g. IP data traffic) are carried over packets or short bursts

High bandwidth utilization -> packets/bursts can fill unused slots of circuits with the same destination

Low power consumption -> using hybrid switches that combine slow switching elements for circuits/long bursts and fast switching elements for packets/short bursts

High network flexibility -> each new application or service can be served using the more suitable switching scheme for it

Matteo Fiorani Lecture, UNIMORE, 29 April 2013

Matteo Fiorani Lecture, UNIMORE, 29 April 2013

Data Center

- Data Center: large dedicated cluster of computers owned and operated by a single organization.
- Blade servers are hosted in racks.
- Servers typology:
 - 1) web server
 - 2) application
 - 3) database

• The servers are interconnected through the data center interconnection network.

Data Center

- Data center categories:
 - 1) University campus (up to few thousands of servers)
 - 2) Private enterprise (up to few thousands of servers)
 - 3) Cloud computing (up to hundreds of thousands of servers)
- Data center traffic
 - For every Byte of data transmitted over the Internet, 1 GByte are transmitted within or between data center.
 - Data center traffic will quadruple by the year 2016 mainly driven by cloud computing traffic. (6.6 zettabyte in 2016)
 - To keep up:
 - 1) Design more efficient data center networks
 - 2) Reduce energy consumption (green data center)

Data Center

- > Data center network
- Transmission in optical domain
- Switching and control information processing in the electronic domain
- Tiers of the data center network:
 - Edge tier

Top-of-Rack (ToR) switches interconnect the blade servers within the rack using 1 Gbps links.

Aggregation tier

Aggregate switches interconnect the ToR switches using 10 Gbps links.

• Core tier

Matteo Fiorani

Core switches interconnect the aggregate switches and connect the data center to the Internet using 40 or 100 Gbps links.

Data Center

- > Data center network
- Optical switched interconnect
 - Optical switching
 - WDM transmission technology
- Higher capacity
- Lower latency
- Lower energy consumption

End-to-end HOS network

Matteo Fiorani Lecture, UNIMORE, 29 April 2013

Matteo Fiorani

matteo.fiorani@unimore.it

Matteo Fiorani Lecture, UNIMORE, 29 April 2013