Defining an Effective and Green Wireless-Link Packet Scheduler through a Modular Architecture

Carlo Augusto Grazia

Department of Engineering Enzo Ferrari
University of Modena and Reggio Emilia

Modena, 15 October 2013
Workshop SFINGI
Software routers to Improve Next-Generation Internet (PRIN 2009)
Talk overview

1. Introduction
 - Problem
 - State of the Art

2. Proposed solution
 - Modular Architecture
 - Benefits

3. TEMPEST tool
 - Test Environment
 - Reference Scenario

4. HFS, the new packet scheduler

5. Conclusions and Future Works
Problem

what
to provide features over a wireless link

- throughput boosting and energy saving
- QoS guarantees

why
radio channels are unreliable

- burst channel error (multipath, fading, interference, noise, ecc...)
- user mobility

where
packet scheduler
State of the Art

typical solution

single *integrated* scheduler

weaknesses

- merge both QoS guarantees and wireless link issues
 - QoS \rightarrow IP level
 - link issues \rightarrow MAC/PHY level

- high-quality schedulers for wired links are unusable without modifications

- different technology or solution means to modify (again) the scheduler
modular architecture

extends the network stack by adding a special **middle layer** on top of the MAC (decouple QoS and throughput problems)

bottom side

deals with the idiosyncrasies of the wireless link

- transmission reliability
- throughput boost using channel state information
- energy saving
Proposed solution 2/3 MAC-SAL Scheduling&Abstraction Layer

modular architecture
extends the network stack by adding a special middle layer on top of the MAC (decouple QoS and throughput problems)

top side
exports the abstraction of a link

- function link_ready()
- transparency for IP layer
- avoid cross-layering (IP-level)
modular architecture
extends the network stack by adding a special middle layer on top of the MAC (decouple QoS and throughput problems)

internally
MAC-SAL layer scheduler

- shared buffer with M virtual queues
- buffer size equal to Q packets
Architecture: double scheduler

IP layer - QoS guarantees

MAC-SAL layer - boost throughput

QoS scheduler

MAC-SAL scheduler
Architecture: double scheduler
Benefits

1. for QoS guarantees, existing packet schedulers for wired links can be used without modification

2. the same packet scheduler can be used
 - on heterogeneous wireless technologies
 - with different solutions to boost the throughput
 - only values/parameters of MAC-SAL scheduler change

3. high throughput through cross-layering, while still preserving flexibility
Test Environment for Performance Evaluation of the Scheduling of Packets

- UNIX-based open tool
- simulate both wired and wireless environment
- possibility to execute original scheduler alone or plugged into a double scheduler
 - different schedulers available by default
 - easy to add new schedulers
- performance measured
 - execution time
 - energy consumption
 - throughput
 - queueing delay, B-WFI, T-WFI, RFI
Test EnvironMent for Performance Evaluation of the Scheduling of packets

- schedulers used:
 - WF2Q+: optimal service guarantees, $O(\log n)$ cost
 - DRR: $O(n)$ deviation from optimal service, $O(1)$ cost
 - QFQ+: quasi-optimal service guarantees, execution time close to DRR
 - W2F2Q: best integrated scheduler with $O(n)$ cost

- easy run-time configuration
 - single/double scheduler mode
 - number of flows (QoS and/or MAC-SAL), weight distribution
 - Q buffer size
 - realistic packets arrival pattern
Single mode Test Environment

![Diagram of test environment with Arrival Pattern, Controller, Pkt creator, Scheduler, and Wrapper.](image-url)
Double mode Test Environment
Reference Scenario

- 20 wireless stations
- link rate 54 Mb/s
- one MAC-SAL flow per wireless station
- MAC-SAL flow packet loss probability
 - ranging linearly from 10^0 to 10^{-1}
 - outsider values as 10^{-2}, 10^{-3} and 10^{-4}
 - static
- MAC-SAL flow weight distribution
 - analogical: $\phi_k = (1 - P_{loss_k}) \cdot 1000$
- 100 QoS flows with different weights
HFS: High-throughput twin Fair Scheduler

QoS layer: quasi-optimal service guarantees, cost close to DRR

MAC-SAL layer: high throughput, quasi-optimal service guarantees, cost close to DRR
Throughput of HFS against W^2F^2Q
T-WFI of HFS against WF2Q+ and DRR
Tradeoff between QoS guarantees and throughput boosting

Tunable parameter:
- the higher is Q, the higher is the throughput
- the lower is Q, the higher is QoS guarantees
Execution time of HFS against DRR

![Graph showing execution time of HFS against DRR](image-url)
Conclusions

Architecture

we defined a feasible, flexible and modular architecture which decouples QoS guarantees and link issues tasks

HFS

we implemented a new flexible, efficient and green packet scheduler for wireless links

- throughput higher than W^2F^2Q
- T-WFI close to WF^2Q+
- execution time close to DRR
- low energy consumption due to:
 - increase throughput → more packets successfully transmitted per energy consumed → less retransmission → less power consumption
 - low execution time per packet processing → less power consumption
Future Works

- benefits for the transport layer (e.g. TCP goodput)
- dynamic weight distribution
- implement and integrate different channel models (e.g. WiMAX, 3G/LTE)
References

Conferences:

M. Casoni, A. Paganelli, P. Valente
A Modular Architecture for QoS Provisioning over Wireless Links.
PAEWN’13. (2013) 95-100, Barcelona

M. Casoni, C.A. Grazia, P. Valente
A Flexible and Green Scheduler for providing QoS and High Throughput over Wireless Links.
ICCST’13. (2013), Hammamet

Journals submissions:

M. Casoni, C.A. Grazia, P. Valente
Defining an Effective Wireless-Link Packet Scheduler through a Modular Architecture.
COMNET. Elsevier

M. Casoni, C.A. Grazia, P. Valente
SIMPAT. Elsevier
thank you
for the attention
extra slides
Execution time of HFS against all

![Graph showing execution time of HFS against different buffer sizes and queue disciplines. The x-axis represents the MAC-SAL buffer size Q [pkts], and the y-axis represents the total execution time in ns. The graph compares HFS, double-DRR, single-wf2q+, and single-drr. The lines show trends and variations based on buffer size.]
Guarantees

1. analytical
 - Deficit Round Robin scheduler in MAC-SAL
 - weight per-flow proportional to the max possible throughput
 - worst-case bandwidth displacement
 - MAC-SAL additional delay

2. experimental
 - proof the effectiveness of the architecture through simulation
 - test environment UNIX-based
 - different schedulers tested
 - different parameters for a possible, realistic scenario
Normalized throughput for different MAC-SAL schedulers

![Graph showing normalized throughput vs. MAC-SAL buffer size Q (pkts) for different schedulers: QFQ+, DRR, WF^2 Q+.]
Queueing delay for different MAC-SAL schedulers
Execution time for different MAC-SAL schedulers

- QFQ+
- DRR
- WF^2 Q+