Defining an Effective and Green Wireless-Link Packet Scheduler through a Modular Architecture

Carlo Augusto Grazia

Department of Engineering *Enzo Ferrari* University of Modena and Reggio Emilia

Modena, 15 October 2013 Workshop SFINGI

Software routers to Improve Next-Generation Internet (PRIN 2009)

Talk overview

- Introduction
 - Problem
 - State of the Art
- Proposed solution
 - Modular Architecture
 - Benefits
 - 3 TEMPEST tool
 - Test Environment
 - Reference Scenario
- 4 HFS, the new packet scheduler
- 5 Conclusions and Future Works

Introduction	TEMPEST	HFS	Conclusions
Problem			
wheet			

what

to provide features over a wireless link

- throughput boosting and energy saving
- QoS guarantees

why

radio channels are unreliable

- burst channel error (multipath, fading, interference, noise, ecc...)
- user mobility

where packet scheduler C. A. Grazia (PhD Student) SFINGI workshop 15 October 2013 3 / 22

State of the Art

typical solution

single integrated scheduler

weaknesses

- merge both QoS guarantees and wireless link issues
 - $\bullet \ \mathsf{QoS} \qquad \longrightarrow \ \mathsf{IP} \ \mathsf{level}$
 - link issues \longrightarrow MAC/PHY level
- high-quality schedulers for wired links are unusable without modifications
- different technology or solution means to modify (again) the scheduler

modular architecture

extends the network stack by adding a special **middle layer** on top of the MAC (decouple QoS and throughput problems)

bottom side

deals with the idiosyncrasies of the wireless link

- transmission reliability
- throughput boost using channel state information
- energy saving

- function link_ready()
- transparency for IP layer
- avoid cross-layering (IP-level)

- for QoS guarantees, existing packet schedulers for wired links can be used <u>without modification</u>
- the same packet scheduler can be used
 - on heterogeneous wireless technologies
 - with different solutions to boost the throughput
 - only values/parameters of MAC-SAL scheduler change
- high throughput through *cross-layering*, while still preserving *flexibility*

Test EnvironMent for Performance Evaluation of the Scheduling of packeTs

- UNIX-based open tool
- simulate both wired and wireless environment
- possibility to execute *original* scheduler alone or plugged into a *double* scheduler
 - different schedulers available by default
 - easy to add new schedulers
- performance measured
 - execution time
 - energy consumption
 - throughput
 - queueing delay, B-WFI, T-WFI, RFI

Test EnvironMent for Performance Evaluation of the Scheduling of packeTs

schedulers used:

- WF²Q+: optimal service guarantees, O(logn) cost
- DRR: O(n) deviation from optimal service, O(1) cost
- QFQ+: quasi-optimal service guarantees, execution time close to DRR
- W^2F^2Q : best integrated scheduler with O(n) cost
- easy run-time configuration
 - single/double scheduler mode
 - number of flows (QoS and/or MAC-SAL), weight distribution
 - Q buffer size
 - realistic packets arrival pattern

Single mode Test Environment

Double mode Test Environment

C. A. Grazia (PhD Student)

SFINGI workshop

- 20 wireless stations
- link rate 54 Mb/s
- one MAC-SAL flow per wireless station
- MAC-SAL flow packet loss probability
 - ranging linearly from 10^0 to 10^{-1}
 - $\bullet\,$ outsider values as $10^{-2},\,10^{-3}$ and 10^{-4}

static

- MAC-SAL flow weight distribution
 - analogical: $\phi_k = (1 \mathsf{P}_{loss_k}) \cdot 1000$
- 100 QoS flows with different weights

HFS: High-throughput twin Fair Scheduler

QoS layer: quasi-optimal service guarantees, cost close to DRR **MAC-SAL layer:** high throughput, quasi-optimal service guarantees, cost close to DRR

Throughput of HFS against W^2F^2Q

T-WFI of HFS against WF^2Q+ and DRR

Tradeoff between QoS guarantees and throughput boosting

Tunable parameter:

- the higher is Q, the higher is the throughput
- the lower is Q, the higher is QoS guarantees

Execution time of HFS against DRR

Architecture

we defined a feasible, flexible and modular architecture which decouples QoS guarantees and link issues tasks

HFS

we implemented a new flexible, efficient and green packet scheduler for wireless links

- \bullet throughput higher than $W^2 F^2 Q$
- T-WFI close to WF^2Q+
- execution time close to DRR
- low energy consumption due to:
 - increase throughput \rightarrow more packets successfully transmitted per energy consumed \rightarrow less retransmission \rightarrow less power consumption
 - $\bullet~$ low execution time per packet processing $\rightarrow~$ less power consumption

Future Works

- benefits for the transport layer (e.g. TCP goodput)
- dynamic weight distribution
- implement and integrate different channel models (e.g. WiMAX, 3G/LTE)

		TEMPEST	HFS	Conclusions
References				
Conferences: M. Casoni,	A. Paganelli, P. Valente	2		

A Modular Architecture for QoS Provisioning over Wireless Links. PAEWN'13. (2013) 95-100, Barcelona

M. Casoni, C.A. Grazia, P. Valente

A Flexible and Green Scheduler for providing QoS and High Throughput over Wireless Links. ICCST'13. (2013), Hammamet

Journals submissions:

M. Casoni, C.A. Grazia, P. Valente

Defining an Effective Wireless-Link Packet Scheduler through a Modular Architecture.

COMNET. Elsevier

M. Casoni, C.A. Grazia, P. Valente

TEMPEST: a new Test EnvironMent for Performance Evaluation of the Scheduling of packeTs. SIMPAT. Elsevier thank you for the attention

extra slides

Execution time of HFS against all

Guarantees

- analytical
 - Deficit Round Robin scheduler in MAC-SAL
 - weight per-flow proportional to the max possible throughput
 - worst-case bandwidth displacement
 - MAC-SAL additional delay
- sperimental
 - proof the effectiveness of the architecture through simulation
 - test environment UNIX-based
 - different schedulers tested
 - different parameters for a possible, realistic scenario

Normalized throughput for different MAC-SAL schedulers

Queueing delay for different MAC-SAL schedulers

Execution time for different MAC-SAL schedulers

