TCP Window Estimation for Burst Assembly in OBS Networks

Maurizio Casoni

(maurizio.casoni@unimore.it)

Department of Information Engineering University of Modena and Reggio Emilia Italy

- Introduction: Optical Burst Switching scenario
- Assembly algorithms
 - Time and volume based
 - \rightarrow TCP Window based
- How evaluate the current window ?
- Proposed multi-queue window-based assembly scheme
- Investigated scenario and numerical results
 - Ns2 simulation tool
 - TCP throughput and CWND behaviour
- Conclusions

Optical Networks: Evolution

- DWDM technique
 - Transmission rate in the range of Tbit/s
- > Architectural semplification
 - From IP over ATM over SONET over WDM to IP over WDM
- Need to exploit in an effective way the huge transmission bandwidth with IP traffic

Wavelength Routing

- ✓ all-optical data network
- Low flexibility for IP traffic
- Optical Packet Switching
 - Ideal transfer mode for IP traffic
 - \checkmark Severe technological constraints \rightarrow not feasible in the short/middle term
 - Optical components immature
 - Optical buffers

Optical Burst Switching

Goal: better sinergy between the mature electronic technologies and the new optical tecnologies (mid-term solutions)

> Switching granularity between WR and OPS

 Burst concept: aggregation of IP packets with common features (e.g. destination and QoS), considered as the basic optical unit

✓ Time and <u>space separation</u> of data and control (header) fields

- Control packet employs dedicated channel and precedes the relative data burst
 - ✓ All-optical network, buffer-less and data trasparent
 - Hybrid opto-electronic network for control signals (*out-of-band signaling*)
- Simplification of the electronic processing of the control packets at intermediate nodes
- Reduction of the opto-electronic functionalities required to router

OBS network

- Data coming from legacy networks are aggregated into a burst in edge nodes
- The control packet is sent first in order to reserve the resources in intermediate nodes
- The burst follows the control packet with some offset time, and it crosses the nodes remaining in the optical domain

- Past studies have shown that TCP performance are influenced by both assembly time and <u>current</u> TCP congestion window size
- Basic idea: Multi-queue assembly scheme, where TCP flows are assigned to queues according to current TCP window size
- Different assembly timers are assigned to each queue
- Performance problem (and goal): how to properly evaluate the right TCP window size value for the current flow ?

Proposed Window based assembly

- Mixed flow multi-queue hybrid assembly algorithm working on the current estimated value of the congestion window W[t];
- Use of (simple) estimator of the congestion window:
 - Storing of the number of consecutive segments for each flow
 - ✓ Assumption of this value (+1) as current TCP window
 - Assumption of congestion avoidance operation

PERFORMANCE EVALUATION

> TCP SACK

- SACK option: the receiver informs the sender about the successfully r eceived segments and sender retransmits lost segments only
- Throughput
 - Measure of the variability of the bandwidth usage over a given time-scale

Instant throughput

 Measure of the variability of the bandwidth usage in a very short time interval and it is strictly related to the congestion window behaviour

Average throughput

- Amount of successfully transmitted bytes over a given time interval
- Aggregated average throughput
 - Average throughput over all active TCP flows

Investigated Network Scenario

TCP Throughput

- Multiqueue: three queues with Tmax = 0.5, 3 and 10 ms
- Single queue: Tmax = 3 ms
- Wmax = 256 segments
- Remarkable improvements, in particular for large numbers of TCP flows (almost 100% for N = 25)

Maurizio Casoni

TCP Intra Fairness

W _{max}	64	128	256
T _{kmax}			
T _{1_max} = 0.5 ms	0.9821	0.9627	0.9365
T_{2_max}= 3 ms	0.9996	0.9691	0.9419
T _{3_max} =10 ms	0.9999	0.9970	0.9721

N = 10 flows

Conclusions

TCP performance over Optical Burst Switching networks has been

investigated by considering the burst assembly function

- > A TCP window-based assembly algorithm has been proposed
 - works on multiple queues, where each queue is characterized by a given T_{max}
 - Incoming TCP segments are assigned to a given queue depending on the estimated current value of the congestion window of the flow they belong to
- A simple but effective estimator has then been added to make the assembly algorithm more realistic and feasible
- Results, obtained through simulations by means of the ns2 simulation tool, show that this algorithm can lead to TCP performance improvements of 100%, compared to a timer based assembly scheme operating on a single queue
- Next steps: improve the window estimation for, hopefully, even better results

THANK YOU FOR YOUR ATTENTION

maurizio.casoni@unimore.it casoni@ieee.org

http://www.dii.unimore.it/~mcasoni

... suggestions are very very welcome

