

TCP Performance for Vehicular Users through Satellite Links

M. Casoni, E. Luppi

(casoni.maurizio@unimore.it)

Department of Information Engineering University of Modena and Reggio Emilia Italy

- > Introduction: reference scenario
 - multi-segment satellite network
- > Target: end-to-end performance evaluation
 - comparison among four TCP flavors
- Performance Enhancing Proxy architecture
- Effectiveness of Window Scale Option and Large Initial Window
- > Numerical results
 - Simulation through ns2 tool
- Conclusions

- End-to-end perfomance study (TCP) in presence of satellite and terrestrial links
- Analysis of 2 and 3 segments PEP architectures (symmetric)
- Handover in tunnels
- ➤ IEEE 802.11b in the train
- Performance evaluation of 4 TCP flavors (NR+Sack, Vegas, Westwood, Fast TCP) with GEO satellite

> TCP SACK

- SACK option: the receiver informs the sender about the successfully received segments
- sender retransmits lost segments only

> TCP Westwood

- estimation of the available bandwidth
- sender continously monitors ACKs from receiver and computes the Eligible Rate Estimate (ERE)
- after apacket loss, sender modifies the values of ssthresh and cwnd as a function of ERE

> TCP Vegas

- no need of a loss for reducing the congestion window
- estimation of the expected throughput: as the number of bytes in the pipe
- in the event of congestion the actual throughput is less than the expected
- estimation made every RTT
- *cwnd* lineary increased or decreased as a function of two parameters (α, β)

> TCP FAST

- congestion control based on queueing delay as measure of congestion
- it aims at fully utilizing link with high bandwidth-delay product
- similar to Vegas but increases and decreases of cwnd are larger
- supposed to be a high-speed version of Vegas
- updates periodically cwnd:
 cwnd ← min { 2 cwnd, (1-γ) + γ (baseRTT/RTTcwnd + α(cwnd, qdelay))}

- Many and different TCP versions on the terrestrial side but one on sat side only
- > End-to-end connections split in two or three segments (connections)
- ➤ All user flows are terminated in GWs and redirected to next hop into new connections which adopt the same TCP flavor
- In case of three segment PEPs, in thethird segment (terrestrial) all flows are reconverted by the second GW to the original TCP flavour

> Throughput

Measure of the variability of thebandwidth usage over a given time-scale

Channel Utilization

Related to throughput

$$U = \frac{\sum_{i=1}^{n} B_{P_i}}{Bandwidth}$$

■ B_{Pi} i-th flow throughput for general transport protocol P

> Fairness

- Chiu/Jain's Fairness Index
- Intra-fairness index
- Best intra-fairness => F=1

$$F_{ ext{intra}} = \frac{B_{P, ext{min}}}{B_{P, ext{max}}}$$

Window Scale

- Maximum Window Scale of standard TCP is 64 Kbytes: small for satcom
- Receiver window is increased by setting a scale factor in the TCP header
- Scale factor is a power of two
- Goal: improve the throughput limit of:

$$Throughput = \frac{window_size}{RTT} = \frac{64KB}{550ms} \cong 1Mbit/s$$

≻Large Initial Window

- Cwnd determines the amount of data transmitted
- with high RTT the slow start phase may limit TCP performance
- It proposes to start with larger values of cwnd
- Slow start phase can be remarkably reduced

ns-2 version 2.28

All TCPflows converted to:

- Satellite links bw: 1, 4, 10 Mbit/s
- Fast TCP: low performance for low bw
- Westwood and Vegas are the best

- with Large Initial Window and WSO
- Great benefit from their use
- Vegas is the best performing
- Westwood performs well with large buffers
- BWxDelay not so high for Fast

	1 Mb/s	4 Mb/s	10 Mb/s
Sack	0.89	0.92	0.94
Vegas	0.82	0.97	0.96
Westwood	0.91	0.98	0.98
Fast	0.87	0.88	0.93

- ■Fairness with no options
- ■200 packets queue length
- •All TCPflavors show high fairness values

- ■Fairness with WS and LIW on
- ■200 packets queue length
- ■Fairness generally decreased
- ■TCP FAST the best
- Westwood the worse

	1 Mb/s	4 Mb/s	10 Mb/s
Sack	0.71	0.69	0.78
Vegas	0.70	0.70	0.77
Westwood	0.57	0.36	0.37
Fast	0.81	0.87	0.93

- Satellite links bw: 1, 4, 10 Mbit/s
- 2 CBR over UDP at 250 Kbit/s
- strong impact for 1 and 4 Mbit/s
- TCP not penalized with BW=10 Mbit/s

- with Large Initial Window and WSO
- Great benefit from their use
- Vegas is again the best performing
- Westwood improves with very large buffers

	1 Mb/s	4 Mb/s	10 Mb/s
Sack	0.79	0.84	0.95
Vegas	0.37	0.71	0.96
Westwood	0.72	0.81	0.92
Fast	0.16	0.33	0.65

- Fairness with no options
- ■200 packets queue length
- General performance degradation with respect to TCP flows without UDP
- ■Good fairness for 10 Mbit/s except for FAST which is the worst

- ■Fairness with WS and LIW on
- ■200 packets queue length
- Fairness generally decreased
- ■TCP Vegas and FAST are the best for 10 Mbit/s

	1 Mb/s	4 Mb/s	10 Mb/s	
Sack	0.82	0.70	0.74	,
Vegas	0.37	0.41	0.83	(
Westwood	0.81	0.51	0.46	
Fast	0.26	0.32	0.85	

- > A multi-segment satellite network for serving fast trains has been studied
- Three segments PEP architecture has been employed to improve end-to-end performance
- Several TCP flavours have been employed and evaluated in the satellite link by means of simulation
- TCP performance determined by throughput, fairness and utilization
- Benefits from Window Scale and Large Initial Window options
- Effects of multimedia streams (i.e. UDP flows) on TCP
- > Results:
 - Vegas has revealed as the best in presence of multimedia flows with options on
 Best in terms of throughput and buffer usage, good in terms of fairness
 - Westwood shows good throughput with very large buffers only and low fairness with WS and LIW
 - > FAST does not make to be effective due to the not so high bw-delay product
- Current works deal with terrestrial hand-over in case of satellite link outage

Department of Information Engineering University of Modena and Reggio Emilia

THANK YOU FOR YOUR ATTENTION

casoni.maurizio@unimore.it

http://www.dii.unimo.it/casoni

... suggestions are very very welcome