
A Tool for Multimedia Quality Assessment in NS3: QoE

MonitorI,II

D. Saladino∗, A. Paganelli∗, M. Casoni∗∗

Department of Information Engineering, University of Modena and Reggio Emilia, via
Vignolese 905, 41125 Modena (MO), Italy

Abstract

Nowadays, with the continuous rise of Internet-based multimedia services, such

as video sharing websites, web radios and IP-based telephony, multimedia com-

munications are gaining more and more popularity.

From the service provider's perspective, there is an increasing need in pro-

viding high-quality content; at the same time, from the network provider's view,

the requirement is to design networks that can e�ectively support these services

with adequate quality-of-service (QoS). In both cases, engineers and researchers

need suitable planning tools exploitable for providing appropriate designs.

For all these reasons, we have focused our work on the design and imple-

mentation of a novel open-source tool, named QoE Monitor, which consists of

a new module for the NS-3 simulator that can be used to perform quality-of-

experience (QoE) assessments in any simulated network. The goal of this tool

is to predict the video and/or audio quality perceived by an end user through

objective metrics. Moreover, its open-source nature foster its validation and

promote knowledge sharing within the research community, while its modular-

IThe research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° [242411].

IIThis is the preprint, shortened version of the work that has been already submitted to
Elsevier �Simulation Modelling Practice and Theory� journal for possible publication.

∗Tel. +390592056323
∗∗Tel. +390592056167
Email addresses: daniela.saladino@unimore.it (D. Saladino),

alessandro.paganelli@unimore.it (A. Paganelli), maurizio.casoni@unimore.it (M.
Casoni)

Preprint submitted to Simulation Modelling Practice and Theory May 18, 2012



2

ity eases the implementation of additional software components to expand its

capabilities (e.g., to account for new codecs and/or new QoE metrics).

In this paper, a detailed description of this tool is done and some numerical

results about video streaming performance evaluations are presented, which

show its e�ectiveness for the QoE analysis.

Keywords: QoE evaluation, NS-3, PSNR, SSIM

1. Introduction

Since there is a continuous growth of multimedia distribution over the In-

ternet, it is increasingly necessary to guarantee the transmission of high quality

video and audio content. For instance, regarding video streaming, the qual-

ity perceived by a viewer is subjective and depends not only on image proper

features, like brightness, color, distortions, information contents, but also on

other factors that involve the human vision perception. The latter one, in

turn, is strictly related to image processing operations, like coding, compres-

sion/decompression, �ltering, transcoding, and/or the adopted display features,

like resolution, screen type, frequency, shared memory.

As video processing, and then transmission, may introduce some amounts

of distortions or artifacts in both the received video and audio contents, the

objective assessment of the quality perceived by a user, connected to a given

network, is of paramount importance. Based on this reason, our research is

focused on the implementation of a complete framework that allows researchers

and engineers to assess video and audio quality perceived by the end users, using

numerical simulation tools. In more details, our goal has been to quantify the

impact of a communication network, with a particular con�guration, and of the

employed codec on the quality of the received video and/or audio �le.

2. QoE Monitor: Architecture and Design

As already previously stated, our purpose is the evaluation of the video

quality experienced by a viewer, by adopting objective metrics based on the de-



3

NS3

Raw Video

CODEC PACKETIZER

MULTIMEDIA

APPLICATION

SENDER

MULTIMEDIA

APPLICATION

RECEIVER

Raw Video

Packet 

Trace

Sender 

Trace
Receiver 

Trace

MULTIMEDIA

FILE REBUILDER

Reconstructed 

Coded Video

CODEC

Coded Video

PSNR/SSIM

Figure 1: The proposed evaluation framework.

tection of the di�erences (or variations) between the original (reference) video

and the received and/or coded one. Consequently, our work consisted in de-

signing and implementing a complete framework, whose principle of operation

is reported in Figure 1, consisting of a new NS-3 module, written in C++, that

reproduces the main components and the functions of the existing EvalVid tool.

By referring to Figure 1, here we provide a brief sketch of the working prin-

ciple behind QoE Monitor. Since our �nal goal is to predict how the video

frames, transmitted through a simulated network, are perceived by a viewer, a

reference raw (i.e., uncompressed) video is coded using a particular codec (with

the adoption of Ffmpeg).

Then, the coded video �le is packetized by the Packetizer component that, in

addition to the packets, produces a packet trace containing some information like

the packet ID, its size and its timestamps. The produced packets are transmitted

through a network, simulated with NS-3, by the MultimediaApplicationSender

component. Its task is to create the Real-time Transmission Protocol (RTP)

[1] packets, to transmit them within an UDP datagram �ow and to produce a

sender trace, which contains the packet ID and its timestamp.

At the receiver side, the packets are received by the MultimediaApplication-

Receiver component, that extracts the header information of each packet and

reproduces the receiver trace, containing packet ID and timestamp.

Packet trace, sender trace and receiver trace are used by the MultimediaFil-



2.1 NS-3 QoE Monitor Classes Design 4

eRebuilder component to reconstruct the video, reporting a possibly corrupted

video �le. The quality of the reconstructed video depends on how many pack-

ets have been received and, therefore, on network parameters like packet delay,

jitter and error rate, that a�ect the QoS.

At this point, the reconstructed video is decoded, in order to obtain another

raw video �le to be displayed and played out at the receiver side. Now, the re-

ceived video can be compared to the reference one employing PSNR and SSIM

metrics (that will be described next), in order to provide a prediction of the per-

ceived video quality and thus to determine the e�ects of the video transmission

over the simulated network.

Finally, our tool allows to perform a lot of kinds of comparison, e.g., the

transmission e�ects only, the adopted codec e�ects only, or both, as presented

in Figure 1 and carried out in our numerical results, that will be presented

afterwards in Section 4.

2.1. NS-3 QoE Monitor Classes Design

In this subsection, an overview of the main classes composing the proposed

NS-3 QoE Monitor is presented, with the help of an Uni�ed Modeling Language

(UML) class diagram reporting the classes developed so far and the associations

and relationships among them (Figure 2).

One of the most important classes is SimulationDataset, which includes all

the state variables required to perform the QoE evaluation process. At a glance,

it stores all the multimedia �le names required for the evaluation, together with

all the traces generated by the events related to the actual transmission, as

described before.

Since the proposed QoE Monitor module works with multimedia content,

there are several classes designed to manipulate video and audio �les. More

speci�cally, the pure virtual Container class and all the classes derived from it

(e.g., Mpeg4Container and WavContainer) are responsible for working with the

speci�c chosen �le container (e.g., Mpeg4, Wave).

The actual multimedia content transmission over a generic simulated net-



2.1 NS-3 QoE Monitor Classes Design 5

Header

+Serialize()

+Deserialize()

+GetSerializedSize()

+Print()

FragmentationUnitHeader NalUnitHeader RTPProtocol

MultimediaFileRebuilder

+SetNextFragment()

+SetNextPacket()

#CheckLostFragments()

#GetStartingFragmentId()

#CreateAndPushProxyPacket()
Packetizer

+GetNextPacket()

H264Packetizer PcmMuLawPacketizer

+FillOnePacket()

<<struct>>

PacketTraceRow

+m_packetId

+m_packetSize

+m_playbackTimestamp

+m_decodingTimestamp

+m_rtpTimestamp

Container

+InitForRead()

+InitForWrite()

+SetNextPacket()

+GetNextPacket()

#PacketizeFromQueue()

Mpeg4Container WavContainer

Application

+StartApplication()

+StopApplication()

MultimediaApplicationSender

#SendPacket()

+SetupDestinationAddress()

#ScheduleTx()

MultimediaApplicationReceiver

+OnReceive()

+SetupReceiverPort()

+SetupFileRebuilder()

-CheckJitter()

<<struct>>

SenderTraceRow

+m_packetId

+m_senderTimestampSimulationDataset

+SetOriginalRAWFile()

+GetOriginalRAWFile()

+SetOriginalCodedFile()

+GetOriginalCodedFile()

+SetReceivedRAWFile()

+GetReceivedRAWFile()

+SetReceivedCodedFile()

+GetReceivedCodedFile()

+SetReceivedReconstructedFile()

+GetReceivedReconstructedFile()

+GetMultimediaTrace()

+SetMultimediaTrace()

+GetPacketTrace()

+PushBackPacketTraceRow()

+GetSenderTrace()

+PushBackSenderTraceRow()

+GetReceiverTrace()

+PushBackReceiverTraceRow()

+GetJitterTrace()

+PushBackJitterTraceRow()

+PrintTraces()

+PrintTracesToVideo()

+GetPacketSent()

+GetPacketReceived()

<<struct>>

JitterTraceRow

+m_packetId

+m_receptionTime

+m_jitter

<<struct>>

ReceiverTraceRow

+m_packetId

+m_receiverTimestamp

0..*

1

0..*

1

0..*

1

1

0..*

0..*

1
0..*

1

0..*

1

0..*

1

1

1

0..1

0..1

0,1

0,1

0..*

1

0..*

1

0..*

1

0,1

0,1

0..1

0..1

0..*

1

0..*

1

0,1

0,1

0..*

1

0..*
1

0..*

1

0..*

1

1

0..*

Metric

+EvaluateQoE()

+PrintResults()

PcmNoiseMetric PsnrMetric

+GetAverageYPsnr()

+GetAverageUPsnr()

+GetAverageVPsnr()

-ComputePsnr()

SsimMetric

+GetAverageSsim()

-ComputeSsim()

-LoadFrame()

-MeanSlidingWindow()

-VarianceSlidingWindow()

-CovarianceSlidingWindow()

-SsimSlidingWindow()

0,1

0,1

Figure 2: QoE Monitor simpli�ed class diagram.



2.1 NS-3 QoE Monitor Classes Design 6

work is performed by the MultimediaApplicationSender class, which has been

derived from the Application class provided by the NS-3 framework. In order

to have a generic sender, exploitable with any possible codec, we have created a

pure virtual class named Packetizer, which hides the actual packetization pro-

cess to the application.

Since our goal has been to support RTP-based multimedia communications,

in the proposed NS-3 module we have implemented the most basic RTP fea-

tures through the RTPProtocol class. With this class we have simply provided

a packet header that conveys packet ID and timestamp information to the re-

ceiver1, as discussed before.

Since one among the �rst codecs we have considered in our design is H.264,

we have implemented the Network Abstraction Layer (NAL) packet header, too,

with the NALUnitHeader class, according to [2]. Moreover, because NALs could

be larger than the network's MTU, we have created an additional class, which is

exploitable to report to the receiver that the current packet is actually a single

fragment of a longer packet, according to [2]: FragmentationUnitHeader.

The most useful information about each packet produced by a packetizer is

stored in a proper packet trace provided by the SimulationDataset class. In more

details, for each �lled packet a PacketTraceRow structure is created and �lled

with the packet ID, its size, its playback timestamp, its decoding timestamp

and its RTP timestamp; �nally, the �lled row is pushed to the packet trace

structure.

Once the application has obtained a complete RTP packet from the packe-

tizer, it transmits it through the network. The information related to each sent

packet (i.e., packet ID and sending time) composes a SenderTraceRow structure,

that is pushed to the sender trace structure located within SimulationDataset.

The receiver is implemented by the MultimediaApplicationReceiver class.

Upon each packet reception, it performs a jitter estimation and check the cur-

rent packet, according to RFC 3550 [1], to assess whether it is arrived on time

1Further capabilities (e.g., RTCP and the like) have not been implemented yet.



2.2 Currently Available Metrics 7

or not. For each successfully received packet, jitter information is saved in a

JitterTraceRow structure containing the corresponding packet ID, the reception

time and the current estimated jitter value. Then, the JitterTraceRow structure

is pushed in the proper jitter trace stored within SimulationDataset.

Finally, the receiver passes each correctly received packet to a Multimedi-

aFileRebuilder, which rebuilds the transmitted �le. Please note that the rebuilt

�le could be possibly corrupted, if compared to the transmitted one, because

of possible packet losses due to the transmission and the coding process. Since

our QoE evaluation process makes use of both the received and the transmitted

�le (e.g., to compute the di�erence between the transmitted and the received

frame of a given video �le), it has been necessary to align the received �le to the

transmitted one, because the received data can be signi�cantly less than that

composing the �le at the sender side (e.g., in case of high packet loss rate). To

accomplish this, for each lost packet we have chosen to embed the corresponding

amount of dummy data to the output �le.

2.2. Currently Available Metrics

Regarding the video quality evaluation metrics, we have considered PSNR

[3] and SSIM [4], that are the most widespread QoE video objective metrics

found in the scienti�c literature. These metrics are both full reference as they

require the complete availability of the two video �les to be compared.

The class PsnrMetric, as the name suggests, has the purpose to compute the

PSNR value between a reference video and a received, and then reconstructed,

one. Its values can vary from 0 to in�nite (in this paper we have considered 99

as the maximum value): bigger values correspond to better quality.

Given each frame of both video �les, this component compares them by

simply computing the signal-to-noise ratio in order to extract the di�erences

between the two images [3]. This implies that PSNR index analyzes all the

image regions in the same way, without taking into account that each one has

di�erent visual importance. We can conclude that PSNR simply detects the

errors between two images (equally analyzing the overall pixels), without ap-



8

proximating all the real human perception features: to a low PSNR value may

subjectively correspond a high quality image.

The class SsimMetric has been implemented to compute the SSIM metric

[4] to overcome to the PSNR drawbacks described before.

SSIM quality measure [4] takes into consideration the Human Visual System

(HVS) characteristics to extract the structural information of an image (because

spatially close pixels are tightly correlated and have strong inter-dependencies)

and, in particular, to be sensitive to its variation, reproducing this feature in

order to better predict the video quality as perceived by the human eyes. It

gives values from 0 to 1: bigger values represent better quality, with values from

0.9 upwards representing a di�erence almost impossible for the human eye to

detect.

The QoE evaluation through the SSIM index is characterized by a greater

computational complexity than PSNR, because it is necessary the employment

of a sliding window ofN×N size (typicallyN = 8), which is shifted pixel by pixel

from top-left corner to the bottom-right one of each single frame. Therefore,

taken each frame of both video �les, for each N × N block, we compute the

mean value and the variance, and then the covariance between the two current

blocks (see [4] for a more accurate discussion about the mathematical details of

SSIM); then, the structural similarity index is computed.

In the end, with SSIM index we are able to quantify the loss of image struc-

tural information, that can provide a good approximation of the perceived image

distortion.

3. Reference Scenarios and Numerical Results

In this Section, two reference network scenarios are described to provide a

detailed overview of how our proposed tool works. Furthermore, numerical re-

sults showing the capabilities of the current release, are provided and discussed,

too. Finally, for each scenario, the simulation setup consists of NS-3.13, Ffmpeg

0.8.2 and libx264 [5] 0.120.2164.



3.1 Scenario 1: Video Streaming Over a Lossy Link 9

Figure 3: Network con�guration related to Scenario 1.

3.1. Scenario 1: Video Streaming Over a Lossy Link

The �rst scenario (which is available together with the source code as qoe-

monitor-example-1.cc) is composed by a simple network of two nodes con-

nected by means of a point-to-point link at 2Mbit/s, with a delay of 2ms, as

depicted in Figure 3.

The goal of this setup is to show, �rstly in a simple topology, the objective

QoE evaluation, in terms of PSNR and SSIM metrics, of an H.264-encoded video

stream through a lossy link. In our setup, we have chosen the �highway� CIF

reference video [6], encoded with H.264.

The packet-error-rate (PER) of the link can be varied at wish, depending on

the chosen video �le and on the simulation duration. More speci�cally, because

the video �le we have chosen is made up of 2000 frames and the total number of

IP packets composing the data �ow is approximately equal to 11400, the PER

value should not be less than 10−3, in order to provide meaningful statistical

results. For this reason, in our evaluations we considered two PER values,

namely PER1 = 10−3 and PER2 = 10−2.

The main simulation outcomes are presented in Figure 4, case (a) for PER1

and case (b) for PER2, respectively. As can be seen, the PSNR and SSIM

pro�les are di�erent for the two cases, which clearly shows that the �rst one has

experienced far better QoE with respect to the second.

In more detail, considering again Figure 4 and taking as an example the

1000-th frame, it is possible to perceptually notice that, for the case where the

error rate is lower (i.e., PER1), the frame quality is high (almost the same of

the transmitted one, with no noticeable artifact introduced), whereas, for the

case where the error rate is higher (i.e., PER2), the image degradation evidently



3.1 Scenario 1: Video Streaming Over a Lossy Link 10

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

Frame number
(a)

PSNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SSIM

PSNR

SSIM

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

Frame number
(b)

PSNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SSIM

PSNR

SSIM

Figure 4: PSNR and SSIM - Scenario 1 for PER = 0.001 and PER = 0.01.



3.2 Scenario 2: Video Streaming in Presence of Cross Tra�c 11

Figure 5: Network con�guration related to Scenario 2.

grows, even if distortions remain acceptable yet.

Finally, please note that even if the PSNR graph is di�erent from the SSIM

one, both trends are quite similar, which clearly shows the positive correlation

of the two considered metrics.

3.2. Scenario 2: Video Streaming in Presence of Cross Tra�c

The second scenario (available as qoe-monitor-example-2.cc) is composed

by a more complex network, with respect to the previous one. In particular, a

butter�y topology consisting of 5 nodes has been implemented, as reported in

Figure 5. Each link is a point-to-point link at 2 Mbit/s, with 2 ms delay.

The goal of this scenario is to show how the proposed tool can be used to

keep track of the QoE variation of a given video transmission, in case of heavy

cross tra�c.

Node 0 and Node 4 are the video sender and the video receiver, respectively,

while Node 1 and Node 5 can be used to inject cross-tra�c in the network.

Again, we have considered the �highway� CIF reference video we adopted in the

previous scenario, also for this case, which translates into a data �ow of about

1.5 Mbit/s (measured at IP layer).

Here we consider only UDP-based cross tra�c for a matter of brevity, but

TCP-based �ows are possible, too.

The main simulation results are presented in Figure 6, where it is possible



3.3 Discussion and comments 12

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

Frame number

PSNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SSIM

 

 

SSIM

PSNR

Figure 6: PSNR and SSIM - Scenario 2 with UDP cross-tra�c.

to see the e�ect of the UDP cross tra�c source on the QoE perceived by the

user. As can be seen, the presence of huge cross tra�c abruptly increases the

packet loss rate, which is correlated to a sudden QoE drop.

3.3. Discussion and comments

As presented in the previous two subsections, QoE Monitor is a �exible

tool, exploitable to perform diverse QoE evaluation over di�erent networks.

The numerical results, obtained by simulating the simple considered scenarios,

have proved the validity of our proposed module to correctly predict the quality

perceived by a human viewer, making it an useful tool to help the design of

e�cient video communication networks.

4. Conclusions

Given the paramount importance that multimedia communications have in

both the current and the future Internet, performance evaluation tools, that

could be exploited by researcher and engineers to evaluate new networks design,

in order to check if they can support high quality multimedia transmissions, and

quickly perform objective QoE evaluations, are of great interest. In this paper,

a novel QoE assessment tool for the NS-3 framework, named QoE Monitor, has

been presented and described in great details.



13

A couple of practical reference scenarios have been presented to show how

the current version works. Up to now, our tool provides the user with a working

set of functions to assess the QoE performance of H.264-encoded transmissions

over arbitrarily networks.

The obtained numerical outcomes, presented in Section 4, have demonstrated

the validity of QoE Monitor, to provide the QoE evaluation of a video �le

coded and transmitted in two di�erent contexts, that is comparable to the real

perception of human eyes.

References

[1] H. S. et al, RTP: A transport protocol for real-time applications.

URL http://tools.ietf.org/html/rfc3550

[2] Y.-K. W. et al, RTP Payload Format for H.264 Video.

URL http://tools.ietf.org/html/rfc6184

[3] Q. Huynh-Thu, M. Ghanbari, Scope of validity of PSNR in image/video

quality assessment, Electronics letters 44 (13) (2008) 800�801.

[4] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment:

From error visibility to structural similarity, Image Processing, IEEE Trans-

actions on 13 (4) (2004) 600�612.

[5] VideoLAN organization, x264 homepage.

URL http://www.videolan.org/developers/x264.html

[6] YUV CIF reference videos - lossless H.264 encoded.

URL http://www2.tkn.tu-berlin.de/research/evalvid/cif.html


