

End-to-End Performance of Heterogeneous Multi-EPON/OBS Networks

<u>Maurizio Casoni⁽¹⁾</u> and Walter Cerroni⁽²⁾

⁽¹⁾ Department of Information Engineering University of Modena and Reggio Emilia Italy

⁽²⁾ D.E.I.S. – University of Bologna, Italy

- > Optical Burst Switching
- Ethernet Passive Optical Network
- EPON-OBS inter-working
- Investigated scenario
- Numerical results
 - TCP performance
 - Simulation through ns2
- Conclusions

Optical Networks: Evolution

- DWDM technique
 - Transmission rate in the range of Tbit/s
- > Architectural semplification
 - From IP over ATM over SONET over WDM to IP over WDM
- Need to exploit in an effective way the huge transmission bandwidth with IP traffic

Wavelength Routing

- ✓ all-optical data network
- Low flexibility for IP traffic
- Optical Packet Switching
 - Ideal transfer mode for IP traffic
 - \checkmark Severe technological constraints \rightarrow not feasible in the short/middle term
 - Optical components immature

Optical Burst Switching

Goal: better sinergy between the mature electronic technologies and the new optical tecnologies (mid-term solutions)

> Switching granularity between WR and OPS

 Burst concept: aggregation of IP packets with common features (e.g. destination and QoS), considered as the basic optical unit

✓ Time and <u>space separation</u> of data and control (header) fields

- Control packet employs dedicated channel and precedes the relative data burst
 - ✓ All-optical network, buffer-less and data trasparent
 - Hybrid opto-electronic network for control signals (*out-of-band signaling*)
- Simplification of the electronic processing of the control packets at intermediate nodes
- Reduction of the opto-electronic functionalities required to router

Optical Burst Switching

Burst

- Variable length
- All-optical domain for data

Edge node

- Burst Assembly
- Header generation

Maurizio Casoni

Header

- Out-of-band transmission
- O/E/O in core nodes

Core node

- Header processing
- Burst forwarding

Ethernet Passive Optical Network

Ethernet Passive Optical Network

- Optical fiber
- Passive components
- Ethernet protocol

Downstream transmission

- Point-to-multipoint
- Each ONU selects its data

Upstream transmission

- Point-to-point
- Multiple Access \rightarrow TDM
- Dynamic bandwidth assignement \rightarrow IPACT
- Use of grant request packets
- Limited discipline
- Cycle time: T_c

Maurizio Casoni

IP look-up

Queues

- destination
- class-of-service

Assembly algorithm

- Timer based
- Length based
-
- mixed flow
- per -flow

Investigated Scenario

U' IO

ONU

ONU 2

) NI I

EPON 1

1 Gbit/s

Combine

1:N

 $\bigcap I$

ONU 2

Spitter/ 1 Obit/s

- TCP Reno with selective ack
- Segment size: 512 byte
- CBR at 100 Mbit/s

- 10 ONUs
- Shared access bw: 1 Gbit/s
- IPACT with limited discipline

OBS network

- Link with error-model: burst loss P_b
- Bandwidth: 10 Gbit/s
- Burst assembly: timer based T_{max}
- Queueing: *mixed flow*

Sinks

ONU 1

ack transmissions

Sink 1

OBS network

10 Gbit/s

ONU N

Edge OBS Node

EPON 2

I\/|

ONU i

Sink 2N

W/L

Maurizio Casoni

Performance Evaluation: Metrics

> Throughput

- Measure of the variability of the bandwidth usage over a given time-scale
- Average throughput: amount of successfully transmitted bytes in a given time interval (e.g. (0,t])

Fairness

- Chiu/Jain's Fairness Index
- Intra-fairness index
- Best intra-fairness => F=1

Average throughput per EPON vs. Tim 🥶

- Cycle time: $T_{c1} = T_{c2} = 2 \text{ ms}$
- T_a = 0.5 2 ms
- TCP segment = 512 bytes
- AWND = 512 segments
- Burst loss = 10⁻³

- 1. EPON show same performance
- 2. Fairness close to 0.9
- 3. Increasing T_a , throughput increases: correlation benefit

Average EPON1-2 throughput vs. T_a

- Cycle time: T_{c1} = T_{c2} =2 ms
- T_a = 0.5 2 ms
- TCP segment = 512 bytes
- AWND = 32-1024 segments
- BWxRTT gives 400 segments as ideal TCP tx window
- Burst loss = 10⁻³

- 1. AW = 512 provides best results
- 2. Correlation benefit is reduced by increasing Ta , in particular for low AW values, for longer RTTs

Fairness vs. T_a and AW

Behaviour

- Generally high values
- Improvements for higher T_a (correlation benefit)
- Worse for larger W_{max}

Because

Different burst composition

• High T_a and small AW \rightarrow many TCP flows

	T_{ass}	0.5 ms	1 ms	1.5 ms	2 ms	
AW = 32	EPON 1	0.992	0.993	0.991	0.989	
	EPON 2	0.991	0.994	0.992	0.990	
AW = 64	EPON 1	0.975	0.987	0.989	0.989	
	EPON 2	0.986	0.987	0.993	0.993	
AW = 128	EPON 1	0.932	0.979	0.987	0.978	
	EPON 2	0.964	0.971	0.979	0.978	
AW = 256	EPON 1	0.901	0.889	0.936	0.942	
	EPON 2	0.940	0.897	0.941	0.964	
AW = 512	EPON 1	0.853	0.911	0.951	0.883	
	EPON 2	0.879	0.901	0.893	0.903	
AW = 1024	EPON 1	0.878	0.865	0.889	0.924	
	EPON 2	0.902	0.880	0.934	0.900	
AW = 1024	EPON 2 EPON 1 EPON 2	0.879 0.878 0.902	0.901 0.865 0.880	0.893 0.889 0.934	0.903 0.924 0.900	

• Short T_a and large AW \rightarrow very few TCP flows

Average EPON2 throughput vs. time 🚳

1. Best performance for $T_{c2} = T_a = 2 \text{ ms}$

Average EPON1-2 throughput vs. T_{c2}/T

Conclusions

- Performance of TCP in a hybrid multi-EPON\OBS optical network
- Focus on the IWU or edge router between EPONs and OBS network
- Numerical investigation has revealed:
 - 1. A remarkable role for TCP performance by cycle time and burst assembly time
 - 2. In particular, T_a properly set to maximize performance
 - 3. Then, T_c has to be set accordingly for the best EPON\OBS internetworking (e.g. $T_c = T_a$) for end-to-end performance
 - 4. With a proper parameter setting, fairness is good as well

- Heterogeneous traffic (UDP and TCP sources)
- More than two EPONs with larger number of ONUs
- Service differentiation schemes in IPACT and/or assembly
- Impact on performance of long-range PONs

THANK YOU FOR YOUR ATTENTION

maurizio.casoni@unimore.it casoni@ieee.org

http://www.dii.unimo.it/casoni

... suggestions are very very welcome

