Systems and Control Theory Master Degree Course in ELECTRONICS ENGINEERING

http://www.dii.unimore.it/~lbiagiotti/SystemsControlTheory.html

Introduction to programming in MATLAB

Luigi Biagiotti

e-mail: luigi.biagiotti@unimore.it

http://www.dii.unimore.it/~lbiagiotti

Introduction

- The commands entered in the Command Window cannot be saved and executed again for several times. Therefore, a different way of executing repetitively commands with MATLAB is:
 - 1. create a file with a list of commands
 - 2. save the file
 - 3. run the file
- MATLAB has a text editor specialized for creating M-files that can be opened with the command >> edit or >> edit filename to open (or create) the file filename.m
- MATLAB file can be ran by typing the name (without extension)
 > fileName <ENTER>

M-File Scripts

- A script file is an external file that contains a sequence of MATLAB statements (comments are preceded by %).
- Script files have a *filename extension* .m and are called Mfiles.
- M-files can be
 - scripts that simply execute a series of MATLAB statements
 - *functions* that can accept arguments and can produce one or more outputs.

🔁 Edito	or - C:\Docume	nts and S	Settings\	lbiagiotti\lm	postazioni lo	cali\Temp	\mot	
File Edit	Text Desktop	Window	Help					× ×
D 🚅 🛯	1 × m m	SCI	😂 👭	f.				380
1 1	*********	******	*****	********		*******	******	
2 🔹								
3 %	Modello mon	tore el	ettric	o DC base				
4 %								
5 %	**********	******	*****	********	*********	*******	******	*****
6								1
7 c.	lear <mark>all</mark>							
8 c.	lose all							
9								
10 👫	***************************************							
11 %	% Definizione delle unità di misura del SI %						_	
12 👫	***************************************							
13 m ³	m=1; Km=1000*m; cm=0.01*m; mm=0.001*m;							
Contraction (Contraction	<pre>s=1; msec=0.001*s; minuti=60*s; ora=60*minuti;</pre>							
	Kg=1; gr=0.001*Kg; mg=0.001*gr;							
College College	N=1; Nm=N*m; mNm=Nm/1000;							
	ad=1; gradi		1/180;					
	= 9.81*m/s	^2;		% accel	lerazione (
Market Contract	gf=g;				* Ki	logrammi	forza	
1000	pm=2*pi/60;							
and the second second	<pre>Amp=1; mAmp=0.001*Amp; V=1;</pre>							
1000	hm=V/Amp;							
0.000 1 2 2	enry=V*s/Amj	p; mHer	rγ=0.0	01*Henry;				
24								
2002	**************************************							
22622	Parametri (
The second second	***********	******	*****	********	*********	*******	******	*****
28 29 t	ina-1.							
Collection of the	ipo=1; witch tipo							
	witch tipo ase 1							
32	Vn=12*V;			2 .	ensione d	i elim	nomine	10
33	Cmax=610.3	24*mNm•			a massima			·
34	Tmay=93 6	767 NAM			orrente m			In 💌
<			11					>
			sci	ript		Ln 1	Col 1	OVR

M-File Scripts

- By creating a file with the extension .m, we can easily write and run programs.
- We do not need to compile the program since MATLAB is an interpretative (not compiled) language.
- MATLAB has thousand of *functions*, and you can add your own using m-files.

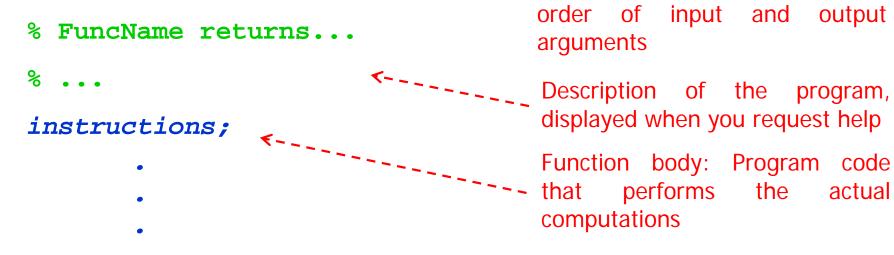
M-file example

Write a script for the solution of a linear system

$$\begin{cases} x_1 + x_2 + x_3 - x_4 = 1 \\ x_1 + x_2 - x_3 = 2 \\ x_1 - x_2 + x_3 = 0 \\ x_1 + 2x_2 - 3x_3 = 2 \end{cases}$$

Solution (in the file LinearSystemScript.m)

A = [1, 1, 1, -1; 1, 1, -1, 0; 1, -1, 1, 0; 1, 2, -3, 0]; b = [1, 2, 0, 2]'; x = inv(A)*b;


Script side-effects

- All variables created in a script file are added to the workspace. This may have undesirable effects, because:
 - Variables already existing in the workspace may be overwritten.
 - The execution of the script can be affected by the state variables in the workspace.

M-functions

- Each M-function has its own area of workspace, separated from the MATLAB base workspace
- Structure of a M-function

function [Output] = FuncName(Input) <---</pre>

- FuncName must begin with a letter, and must be no longer than the maximum of 63 characters.
- The name of the text file containing the function must be equal to the function name with the extension .m

Function definition line (keyword **function**): it defines the

function name, and number and

Control flow and operators

- Like other computer programming languages, MATLAB has some decision making structures for control of command execution. These control flow structures include for loops, while loops, and if-else-end constructions.
- Control flow structures are often in script M-files and M-function.

`if...end' structure

MATLAB supports the variants of *if* construct:

```
1.if ... end
2.if ... else ... end
3.if ... elseif ... else ... end
```

Example (computation of the discriminant):

```
1. discr = b*b - 4*a*c;
if discr < 0
disp('Warning: discriminant is negative, roots are
imaginary');
end
```

```
2. discr = b*b - 4*a*c;
if discr < 0
disp('Warning: discriminant is negative, roots are
imaginary');
else
disp('Roots are real, but may be repeated')
end
```

`if...end' structure

Example (computation of the discriminant):

```
3. discr = b*b - 4*a*c;
if discr < 0
disp('Warning: discriminant is negative, roots are
imaginary');
elseif discr == 0
disp('Discriminant is zero, roots are repeated')
else
disp('Roots are real')
end
```

- Note that
 - elseif has no space between else and if (one word)
 - no semicolon (;) is needed at the end of lines containing if, else, end
 - indentation of if block is not required, but facilitate the reading.
 - the end statement is required

Relational and logical operators

 A relational operator compares two expressions by determining whether a comparison is *true* or *false* (comparison is made element-by-element). Relational operators are shown in the following table

Operator	Description
>	Greater than
<	Less than
>=	Greater than or equal to
<=	Less than or equal to
==	Equal to
~=	Not equal to
&	AND operator
1	OR operator
~	NOT operator

The 'for...end' loop

- In the for ... end loop, the execution of a command is repeated at a fixed and predetermined number of times.
- The syntax is

for variable = expression
statements
end

where expression is usually a vector of the form i:s:j

Example: definition of a row vector

```
y=[];
for t=0:0.1:5
    y= [y t];
end
```

Multiple for loops can be nested

Luigi Biagiotti

The 'while...end' loop

- This loop is used when the number of passes is not specified.
 The looping continues until a stated condition is satisfied.
- The while loop has the form

```
while expression
statements
end
```

where **statements** are executed as long as **expression** is true.

Example

```
x = 1
while x <= 10
x = 3*x
end</pre>
```

 If the condition inside the looping is not well defined, the looping will continue *indefinitely*. If this happens, we can stop the execution by pressing Ctrl-C.

Luigi Biagiotti

- Define the MATLAB function [x] = LinearSystem(A,b), that finds the solution x of a generic system of linear equations A x = b
- Use the function to solve the system

$$\begin{cases} x_1 + x_2 + x_3 - x_4 = 1 \\ x_1 + x_2 - x_3 = 2 \\ x_1 - x_2 + x_3 = 0 \\ x_1 + 2x_2 - 3x_3 = 2 \end{cases}$$

Define the MATLAB function

[A,B,C,D] = ControllableCanonicalForm(Num,Den) that, starting from the transfer function of a SISO system (Num and Den are the vectors of the coefficients of the numerator and denominator polynomials, respectively), provides the matrices of the state-space representation of the system in the controllable canonical form.

• Given the system

$$G(s) = \frac{10s + 10}{s^3 - 1.6s^2 - 15.4s + 6.1}$$

find its model in the state-space representation by using the newly defined function.

The relation between the *n*-th order transfer function

$$G(s) = \frac{c_{n-1}s^{n-1} + c_{n-2}s^{n-2} + \dots + c_1s + c_0}{s^n + a_{n-1}s^{n-1} + a_{n-2}s^{n-2} + \dots + a_1s + a_0}$$

and the matrices of the system is

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-1} \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix},$$
$$C = \begin{bmatrix} c_0 & c_1 & c_2 & \dots & c_{n-2} & c_{n-1} \end{bmatrix}, \qquad D = 0.$$

- Define the MATLAB function $[q_t] = TrjPoly3(q0,q1,T,dt)$, that returns a vector containing the samples (computed with timestep dt) of a third-order polynomial trajectory from the initial point q_0 to the final point q_1 in a duration T.
- the analytical equation of the trajectory is

$$q(t) = q_0 + h\left(3\left(\frac{t}{T}\right)^2 - 2\left(\frac{t}{T}\right)^3\right), \quad 0 \le t \le T,$$

• With the new function compute a trajectory from $q_0 = 0$ to $q_1 = 3$ (T=2) and plot its behavior as a function of time.

Systems and Control Theory Master Degree Course in ELECTRONICS ENGINEERING

http://www.dii.unimore.it/~lbiagiotti/SystemsControlTheory.html

Introduction to programming in MATLAB

Luigi Biagiotti

e-mail: luigi.biagiotti@unimore.it

http://www.dii.unimore.it/~lbiagiotti