Systems and Control Theory

Master Degree Course in ELECTRONICS ENGI NEERING
http://www.dii.unimore.it/~Ibiagiotti/SystemsControlTheory.html

A General Introduction to Matlab

Luigi Biagiotti
e-mail: Luigi.biagiotti@unimore.it
http://www.dii.unimore.it/~Ibiagiotti

Outline

- The objectives of this lecture are
- To become familiar with the MATLAB environment
- To enable you to use some simple MATLAB commands from the Command Window
- Bibliography:
- Brian Hahn and Daniel T. Valentine, Essential MATLAB for Engineers and Scientists, Academic Press.

Matlab

- MATLAB is a powerful computing system for handling scientific and engineering calculations.
- The name MATLAB stands for Matrix Laboratory, because the system was designed to make matrix computations particularly easy.
- Matlab is based on a kernel of general purpose functions enhanced with additional tools, the so-called Toolboxes, that help users to solve specific problems, e.g. the Control System Toolbox. A toolbox is a simple collection of matlab functions.

Matlab Desktop

Command Window

 To get started, type one of these: melpuin, helpdesk, or dem.
 For product infornation. type tour or visit wuv.nathuorks.con.
 - puo
ans =
c: \UATLRER11\Uork
, dir
motoreDC 日.n motoreDCAplot.n
notoreDC 日nol, Eal
dir ••n
notorepce.n noterebceplot.n
- notorsben
elapsed_tine -
0.4868
on tho
Your variables are:


```
This version is for edecational classroox use only.
```

```
This version is for edecational classroox use only.
```

- MATLAB commands must be inserted by means of the Command Window.
- Some commands of general use are
- pwd provides the current directory
- dir lists the files of current directory
- clc clears the command window
- Variables defined in the MATLAB environment are collected in the
WorkSpace. who lists the variables in the current workspace. Command clear removes all variables from the workspace.
- Command help provides the list of all the toolboxes which are installed in the system. By typing in
>> help <toolbox name> one obtains the list of the functions composing the toolbox (e.g. help control). The command
>> help <command name>
provides a description of this command

Variables

- MATLAB variables are created with an assignment statement
>> variable name $=$ a value (or an expression) where expression is a combination of numerical values, mathematical operators, variables, and function calls
- For example- By omitting the semicolon (;) the name >> $x=12$: £ENTER> and the value of the variable are printed in the screen. Conversely, the echo of the command is not provided
- Once a variable has been created, it can be reassigned

$$
\begin{aligned}
& \gg \mathrm{t}=5 ; \\
& \gg \mathrm{t}=\mathrm{t}+1 \\
& \mathrm{t}= \\
& 6
\end{aligned}
$$

Ercor messages

- If we enter an expression incorrectly, MATLAB will return an error message.
- For example

```
>> x = 10;
>> 5x
??? 5x
    |
Error: Unexpected MATLAB expression.
```


Basic mathematical functions

Trigonometric.
sin
sinh
asin
cos
cosh
acos
tan
tanh
atan
atan2
Exponential.
exp
log
$\log 10$
sqrt
Complex.
abs
angle
Rounding
floor
ceil
round
mod
rem
sign

- Sine
- Hyperbolic sine.
- Inverse sine.
- Cosine.
- Hyperbolic cosine.
- Inverse cosine.
- Tangent.
- Hyperbolic tangent.
- Inverse tangent.
- Four quadrant inverse tangent.
- Exponential.
- Natural logarithm.
- Common (base 10) logarithm.
- Square root.
- Absolute value.
- Phase angle.
and remainder.
- Round towards minus infinity.
- Round towards plus infinity.
- Round towards nearest integer.
- Modulus (signed remainder after division).
- Remainder after division.

Predefined constant values

- In addition to the elementary functions, MATLAB includes a number of predefined constant values. The most common values are:
- pi <-------- The π number, $\pi=3.14159$
- \mathbf{i}, \mathbf{j} <-------- The immaginary unit \mathbf{i}
- Inf ------- - The infinity, ∞
- NaN <-------- Not a number

Matrices and vectors

- To type a matrix into MATLAB it is necessary to
- begin with a square bracket, [
- separate elements in a row with spaces or commas (r)
- use a semicolon (;) to separate rows
- end the matrix with another square bracket,].
- Example

$$
\begin{aligned}
& >A=[1,2,3 ; 4,5,6 ; 7,8,9] \\
& A= \\
& \\
& 1
\end{aligned}
$$

Matrices and vectors

- A vector is a special case of a matrix
$\gg c=[4 ; 5 ; 6]$
$\gg r=[4,5,6]$

4
$\begin{array}{lll}4 & 5 & 6\end{array}$
5
6
- A row vector can be converted to a column vector using the transpose operator, and vice-versa. The transpose operation is denoted by an apostrophe or a single quote (').
- The easiest way of defining a vector where the elements (components) increase by the same amount is

$$
\gg \mathrm{t}=[0: 0.1: 10]<-----\quad \text { row vector with elements from } 0
$$

Matrices and vectors indexing

- Once we have entered a matrix, we can refer to it simply as matrix A. We can then view a particular element in a matrix by specifying its location

4

- Correcting any entry is easy through indexing
>> $A(3,3)=0$
A $=$

1	2	3	
4	5	6	Here we substitute $\mathrm{A}(3,3)=9$
7	8	0	by $A(3,3)=0$

The colon operator (:)

- The colon operator can be used to pick out a certain row or column. For example, the statement $\mathbf{A}(\mathrm{m}: \mathbf{n}, \mathbf{k}: \mathbf{l})$ specifies rows m to \mathbf{n} and column \mathbf{K} to 1.
- Example 1

```
\(\gg A(1,:)\)
ans \(=\)
\(123<-----\) First row of \(A\)
```

- Example 2

```
\(\gg A(: 1)\)
ans =
1
4
7
```

- Example 3
$>B=A(2: 3,1: 2)$
B =
<-------- Sub-matrix of A
4
5
7
8

Matrix generators

MATLAB provides functions that generate elementary matrices:
A=eye(n); <-------- n-by-n identity matrix
A=eye (n, m) ; <-------- m-by-n matrix with 1 on the main diagonal
A=zeros(m,n);<-------- m-by-n matrix of zeros
A=ones(m,n); <-------- m-by-n matrix of ones
$A=r a n d(m, n)$; <-------- m-by-n matrix of random numbers
$\mathrm{A}=\operatorname{diag}(\mathrm{V})$; $<-------\begin{gathered}n \text {-by-n matrix with the element of vector } \mathrm{V} \text { on the } \\ \text { main diagonal }\end{gathered}$
For a complete list of elementary matrices and matrix manipulations, type help elmat or doc elmat

Coneatenating matrices

- Matrices can be made up of sub-matrices
- Problem: make up the 6-by-6 matrix

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad \text { where } \quad \begin{array}{ll}
& A_{11}=\left[v_{1}, v_{2}, v_{3}\right] \\
& \\
& A_{12}=0_{3} \\
& A_{21}=I_{3} \\
& A_{22}=\left[v_{3}, v_{2}, v_{1}\right]
\end{array}
$$

and v_{1}, v_{2} e v_{3} are column vetors defined by the user.

- Solution:

```
>> v1 = [11 2 3]';
>> v2 = rand(3,1);
>> v3 = [3; 2; 1];
>> A11=[v1 v2 v3];
>> A22=[v3 v2 v1];
>> A = [A11, eye(3); zeros(3), A22]
```


Array operations

- MATLAB allows the following arithmetic operations on matrices:
- addition +

$$
\gg A+B
$$

- subtraction こ=> valid if \mathbf{A} and \mathbf{B} are of the same size > A-B
- multiplication *
\gg A*B <------ valid if A's number of column equals
B's number of rows
- (right and left) divisions /

$$
\gg A / B
$$

Equivalent to
A*inv(B)
$\gg A \backslash B$
Equivalent to $\operatorname{inv}(A)$ *B

- Exponentiation ^
> $\mathbf{A}^{\wedge} \mathbf{2}$ <------ valid if A is square and equals $A^{*} A$

Operations element-by-element

- Arithmetic operations can be done element-by-element. The period character (.) distinguishes these operations from standard matrix operations.
- multiplication .*
> A.*B
- (right and left) divisions ./
- Exponentiation .^
> A.^B

- Example:

```
\(\gg v=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] . *\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\)
v =
    1
    4
    9
```


Matrix functions

MATLAB provides many matrix functions for various matrix/vector manipulations

- Dimensions
>> [m,n]=size(A)

i
----------- number of column
L----------- number of row
for vectors, see command length
- Transpose

```
>>B=A' (alternatively >>B=transpose(A))
```

- Determinant

$$
\gg d=\operatorname{det}(A) \quad<-----A \text { must be square }
$$

Matrix functions

- Inverse
>>I=inv(A) <------A must be square
For rectangular matrices, see command pinv
- Rank, i.e. number of linearly independent rows or columns
>> r=rank(A)
- Eigenvalues
$\gg e=e i g(A)$
 eigenvalues

Solution of a linear system

- Problem: solve the system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}-x_{4}=1 \\
x_{1}+x_{2}-x_{3}=2 \\
x_{1}-x_{2}+x_{3}=0 \\
x_{1}+2 x_{2}-3 x_{3}=2
\end{array}\right.
$$

- Solution:

$$
\begin{aligned}
& \gg A=[1,1,1,-1 ; 1,1,-1,0 ; 1,-1,1,0 ; 1,2,-3,0] ; \\
& \gg b=[1,2,0,2] ' ; \\
& \gg x=\operatorname{inv}(A) * b ; \\
& \text { or } \\
& \gg x=A \backslash b
\end{aligned}
$$

Vectors role

- The vectors have in MATLAB two fundamental functions:
- polynomials representation, a polynomial is represented by the vector of its coefficients
- signals representation, a signal is represented by the sequence of values that it takes during time, therefore by a vector

Operations on polynomials

- Polynomial "pol" ($=3 s^{2}+2 s+1$) can be defined with the statement:

```
>> pol= [l3 2 1]
```

pol =

321

- roots: roots computation (pol=0):
>> roots(pol)
ans =
$-0.3333+0.4714 i$
-0.3333 - 0.4714i
- polyval: pointwise evaluation of a polynomial:
>> polyval(pol,1)
ans =
6

Operations on polynomials

- Computation of the residues, poles and direct term of the partial fraction expansion of the ratio of two polynomials:
es.

$$
2
$$

$$
\begin{aligned}
& \frac{2 s^{3}+5 s^{2}+3 s+6}{s^{3}+6 s^{2}+11 s+6}=\frac{-6}{s+3}+\frac{-4}{s+2}+\frac{3}{s+1}+2 \\
& \gg \text { num }=\left[\begin{array}{llll}
2 & 5 & 3 & 6
\end{array}\right] ; \text { den }=\left[\begin{array}{ccc}
1 & 6 & 11
\end{array}\right] \text {; } \\
& \gg[r, p, k]=r e s i d u e(n u m, d e n) \\
& r= \\
& \text {-6.0000 } \\
& \text {-4.0000 } \\
& 3.0000 \\
& p= \\
& \text {-3. } 0000 \\
& \text {-2.0000 } \\
& \text {-1.0000 } \\
& \text { k = }
\end{aligned}
$$

Operations on polynomials

- Polynomial multiplication ($\mathrm{pol} 3=(\mathrm{s}+1)(\mathrm{s}+1)$):

```
>> pol1=[11 1]; pol2=[1 1];
>> pol3=conv(pol1, pol2)
pol3 =
1 2 
```

- Polynomial division ($\left.\left(s^{2}+2 s+2\right)=q(s)(s+1)+r(s)\right)$:

```
>> pol1=[1 2 2]; pol2=[1 1];
>> [q,r]=deconv(pol1,pol2)
q = <------quotient
1 
r = <------ remainder
0
    0
1
```


Basic plotting

- The basic MATLAB graphing procedure, for example in 2D, is to take a vector of x-coordinates, $x=\left(x_{1}, \ldots, x_{n}\right)$, and a vector of y coordinates, $y=\left(y_{1}, \ldots, y_{n}\right)$, locate the points $\left(y_{i}, y_{i}\right), i=1, \ldots, n$ and then join them by straight lines.
- This procedure is made by the command plot.
- Example:

$$
\begin{aligned}
& \gg x=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array}\right] ; \\
& \gg y=\left[\begin{array}{ll}
3 & -1 \\
\gg & 4
\end{array}\right) \\
& \gg \operatorname{plot}(x, y)
\end{aligned}
$$

\underline{x} and y must have the same length

- Problem: plot the function $\sin (\mathbf{x})$ for \mathbf{x} from 0 to 2π

Adding titles, axis labels, and annotations


```
>> x=0:0.1:2*pi;
>> plot(x,sin(x))
```

- MATLAB enables you to add axis labels, titles, and a grid.

Specifying line styles and colors

- It is possible to specify line styles, colors, and markers (e.g., circles, plus signs, . . .) using the plot command:
plot(x,y,'style_color_marker')
where style_color_marker is a triplet of values from the following table

Symbol	Color
\mathbf{k}	Black
\mathbf{r}	Red
\mathbf{b}	Blue
\mathbf{g}	Green
\mathbf{c}	Cyan
\mathbf{m}	Magenta
\mathbf{y}	Yellow

Symbol	Line Style
-	Solid
--	Dashed
-	Dotted
.-	Dash-dot

Symbol	Color
$\mathbf{+}$	Plus sign
$\mathbf{0}$	Circle
$\boldsymbol{*}$	Asterisk
.	Point
\mathbf{x}	Cross
\mathbf{s}	Square
\mathbf{d}	Diamond

Multiple data sets in one plot

- The command hold on holds the current plot and all axis properties so that subsequent graphing commands add to the existing graph.


```
>> hold on
>> plot(x, cos(x),'r--')


\section*{Multiple data sets in one plot}
- The command subplot ( \(m, n, p\) ) breaks the Figure window into an \(m\) -by- \(n\) matrix of small axes, and selects the \(p\)-th axes for the current plot
\(\gg\) subplot \((2,1,1)\)
\(\gg \operatorname{plot}(x, \sin (x))\)
>> ylabel('sin')
>> subplot (2,1,2)
>> plot( \(x, \cos (x)\) )
>> ylabel('cos')



\section*{Miscellaneous on plot}
- The command figure opens a new figure or can be used to select a figure previously defined (figure(FigNum))
- The command close(FigNum) closes a specific figure. The command close all closes all the figure defined in the MATLAB session
- The command print can be use to produce jpeg or eps images from the current figure
```

>> print -depsc FileName <------ It produces the file
FileName.eps
>> print -djpeg FileName <------ It produces the file
FileName.jpg

```

\section*{Systems and Control Theory}

\section*{Master Degree Course in ELECTRONICS ENGI NEERING}
http://www.dii.unimore.it/~Ibiagiotti/SystemsControlTheory.html

\section*{A General Introduction to Matlab}

\author{
Luigi Biagiotti \\ e-mail: luigi.biagiotti@unimore.it \\ http://www.dii.unimore.it/~Ibiagiotti
}```

