Diagrammi di Bode

• La funzione di risposta armonica $F(\omega) = G(j\omega)$ può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

• | Diagrammi di Bode sono due:

1) <u>Diagramma delle ampiezze</u>: rappresenta il modulo $|G(j\omega)|$ in funzione della pulsazione ω . Sia il modulo $|G(j\omega)|$ che la pulsazione ω vengono espressi in scala logaritmica. Tipicamente per i moduli $|G(j\omega)|$ si usano i "db" ($A_{db} = 20 \log_{10} A$), mentre per la pulsazione ω si usa la scala logaritmica in base 10.

2) <u>Diagramma delle fasi</u>: rappresenta la fase $\arg G(j\omega)$ in funzione della pulsazione ω . In questo caso la fase $\arg G(j\omega)$ viene espressa in scala lineare, mentre la pulsazione ω viene espressa in scala logaritmica base 10.

• Esempio:

$$G(s) = \frac{100\left(1 + \frac{s}{80}\right)}{\left(1 + \frac{s}{100}\right)\left(1 + \frac{s}{1000}\right)} \quad \rightarrow \quad G(j\omega) = \frac{100\left(1 + j\frac{\omega}{80}\right)}{\left(1 + j\frac{\omega}{100}\right)\left(1 + j\frac{\omega}{1000}\right)}$$

• Diagrammi di Bode:

Conversione delle ampiezze in db

• Il *decibel* è un'unità logaritmica convenzionale che normalmente si impiega per esprimere quantità positive, tipicamente il guadagno di amplificatori:

 $A_{\rm \, db} = 20 \log_{10} A$

• Per la conversione si può utilizzare il seguente diagramma:

Posto A nella forma:

$$A = r \cdot 10^n \quad \text{con} \quad 1 \le r < 10,$$

il valore di A in decibel è:

$$A_{\rm db} = 20 \, n + s \, \operatorname{db}$$

dove s si ricava dal diagramma a fianco: $0 \le s < 20$.

• Alcune conversioni di uso frequente:

Le decadi		A > 1	
:		$\sqrt{2}$	3 db
10000	$80 \ db$	2	6 db
1000	60 db	5	$14 \; \mathrm{db}$
100	$40 \; \mathrm{db}$	20	26 db
10	$20~\mathrm{db}$	50	$34 \; \mathrm{db}$
1	$0 \ db$	A < 1	
0.1	$-20 \; \mathrm{db}$	$1/\sqrt{2}$	-3 db
0.01	$-40 \; \mathrm{db}$	1/2	-6 db
0.001	$-60~\mathrm{db}$	1/5	$-14 \; \mathrm{db}$
0.0001	$-80 \; \mathrm{db}$	1/20	$-26 \; \mathrm{db}$
:	:	1/50	-34 db

- Esempio 1:

$$A = 24$$
$$A = 2.4 \cdot 10^{1}$$
$$A_{db} \simeq 20 + 8 = 28$$

- Esempio 2:

$$A = 0.56$$

 $A = 5.6 \cdot 10^{-1}$
 $A_{db} \simeq -20 + 15 = -5$

- Ogni 6 db il valore di Araddoppia;
- Ogni 20 db il valore di A è moltiplicato per 10;

• Per i calcoli teorici si utilizzano tipicamente i logaritmi naturali:

$$\ln G(j\omega) = \ln \left[|G(j\omega)| e^{j \arg G(j\omega)} \right] = \underbrace{\ln |G(j\omega)|}_{\alpha} + j \underbrace{\arg G(j\omega)}_{\beta}$$

Peraltro, un cambiamento di base dei logaritmi equivale ad un semplice cambiamento di scala.

- Si possono utilizzare due tipi diversi di carta millimetrata:
 - a) carta con doppia scala logaritmica per le ampiezze e carta semilogaritmica per le fasi;
 - b) carta semilogaritmica sia per le ampiezze sia per le fasi. In questo caso la scala delle ampiezze è graduata in decibel: $A_{db} = 20 \log_{10} A$.

- I vantaggi che si hanno impiegando una scala logaritmica sono:
 - 1) è possibile avere una rappresentazione dettagliata di grandezze che variano in campi notevolmente estesi;
 - 2) i diagrammi di Bode di sistemi in cascata si ottengono come somma dei diagrammi di Bode dei singoli sottosistemi;
 - 3) i diagrammi di Bode di una funzione data in forma fattorizzata si ottengono come somma dei diagrammi elementari dei singoli fattori.

• Funzione G(s) in forma *polinomiale* :

$$G(s) = K_1 \frac{s^m + b_{m-1} s^{m-1} + \ldots + b_1 s + b_0}{s^h (s^{n-h} + a_{n-1} s^{n-h-1} + \ldots + a_{h+1} s + a_h)}$$

- Il fattore s^h corrisponde ad un polo nell'origine con grado di molteplicità h. Se h=0 la funzione G(s) non presenta poli nell'origine.
- Forma fattorizzata a poli e zeri:

$$G(s) = K_1 \frac{(s - z_1)(s - z_2) \dots (s - z_m)}{s^h (s - p_1)(s - p_2) \dots (s - p_{n-h})}$$

• Forma fattorizzata a costanti di tempo:

$$G(s) = K \frac{(1+\tau_1's) (1+\tau_2's) \dots (1+2\delta_1' \frac{s}{\omega_{n1}'} + \frac{s^2}{\omega_{n1}'^2}) \dots}{s^h (1+\tau_1 s) (1+\tau_2 s) \dots (1+2\delta_1 \frac{s}{\omega_{n1}} + \frac{s^2}{\omega_{n1}^2}) \dots}$$

• Il *logaritmo del modulo* della funzione G(s):

$$\log |G(s)| = \log |K| + \log |1 + \tau_1' s| + \dots + \log |1 + 2\delta_1' \frac{s}{\omega_{n1}'} + \frac{s^2}{\omega_{n1}'^2} |$$
$$- \log |s^h| - \log |1 + \tau_1 s| - \dots - \log |1 + 2\delta_1 \frac{s}{\omega_{n1}} + \frac{s^2}{\omega_{n1}^2} |$$

• La fase della funzione G(s):

$$\arg G(s) = \arg K + \arg \left(1 + \tau_1' s\right) + \ldots + \arg \left(1 + 2\delta_1' \frac{s}{\omega_{n1}'} + \frac{s^2}{\omega_{n1}'^2}\right)$$
$$- \arg (s^h) - \arg \left(1 + \tau_1 s\right) - \ldots - \arg \left(1 + 2\delta_1 \frac{s}{\omega_{n1}} + \frac{s^2}{\omega_{n1}^2}\right)$$

• Il diagramma di Bode di una qualunque funzione G(s) si ottiene come somma dei diagrammi di Bode delle seguenti funzioni elementari:

$$K, \qquad s^{\pm 1}, \qquad (1+s\,\tau)^{\pm 1}, \qquad \left(1+2\,\delta\,\frac{s}{\omega_n}+\frac{s^2}{\omega_n^2}\right)^{\pm 1}$$

• Guadagno costante:

$$G(s) = K$$

Funzione di risposta armonica:

$$G(j\omega) = |K| \, e^{j\varphi}$$

 $\mathsf{Modulo:} \quad |G(j\omega)| = |K|.$

 $\label{eq:Fase: power fase: } \mathsf{Fase: } \varphi = \left\{ \begin{array}{ccc} 0 & \mathsf{se} & K > 0 & \underbrace{\overleftarrow{\mathsf{pr}}}_{\mathtt{Lo}} & \underbrace{\mathbf{r}}_{\mathtt{Lo}} & \underbrace{\mathbf$

l diagrammi dei moduli e delle fasi sono costanti e indipendenti da ω .

• Polo nell'origine:

$$G(s) = \frac{1}{s}$$

Funzione di risposta armonica:

$$G(j\omega)=\frac{1}{j\omega}$$

Modulo: $|G(j\omega)| = \frac{1}{\omega}$

Fase costante: $\varphi = -\frac{\pi}{2}$

Diagramma dei moduli

Il diagramma delle ampiezze è una retta di pendenza "-1" (cioè -20 db/dec) con guadagno unitario in corrispondenza della pulsazione $\omega = 1$.

• <u>Polo reale</u>:

$$G(s) = rac{1}{1+ au s} \qquad
ightarrow \qquad G(j\omega) = rac{1}{1+j\omega au}$$

• Diagrammi di Bode delle ampiezze e delle fasi:

$$|G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2 \tau^2}},$$

a) Alle basse frequenze:

$$G(j\omega)\big|_{\omega\simeq 0}\simeq 1$$

Modulo iniziale: $G_0 = 1$. Fase iniziale: $\varphi_0 = 0$.

b) Alle alte frequenze:

$$G(j\omega)\big|_{\omega\simeq\infty}\simeq rac{1}{j\omega\tau}$$

Modulo finale: $G_{\infty} = 0$. Fase finale: $\varphi_{\infty} = -\frac{\pi}{2}$.

• È possibile dimostrare che vale la seguente relazione:

$$\frac{\omega_0}{\omega_a} = \frac{\omega_b}{\omega_0} = e^{\frac{\pi}{2}} = 4,81$$

• I cambiamenti di pendenza dei diagrammi asintotici avvengono alle pulsazioni:

$$\omega_0 = \frac{1}{\tau}, \qquad \omega_a = \frac{\omega_0}{4.81} = \frac{1}{4.81\tau}, \qquad \omega_b = 4.81\omega_0 = \frac{4.81}{\tau}$$

- La massima distanza esistente tra la rappresentazione asintotica e l'andamento reale si ha per $\omega = \omega_0 = 1/\tau$ e vale $1/\sqrt{2} \simeq -3$ db.
- \bullet La pendenza $-20~{\rm db/decade}$ viene tipicamente indicata con il simbolo "-1".
- I diagrammi di Bode della funzione $G(s) = (1 + \tau s)$ si ottengono ribaltando attorno all'asse delle ascisse quelli della funzione $G(s) = (1 + \tau s)^{-1}$.
- Quando τ è negativa, il diagramma delle ampiezze rimane immutato, mentre il diagramma delle fasi risulta ribaltato rispetto all'asse delle ascisse.

 $\arg G(j\omega) = -\arctan \omega \tau$

• Poli complessi coniugati ($0 \le \delta < 1$):

$$G(s) = \frac{1}{1 + \frac{2\delta}{\omega_n}s + \frac{s^2}{\omega_n^2}} \longrightarrow \qquad G(j\omega) = \frac{1}{1 - \frac{\omega^2}{\omega_n^2} + j \, 2 \, \delta \, \frac{\omega}{\omega_n}}$$

• Diagrammi di Bode delle ampiezze e delle fasi:

$$|G(j\omega)| = \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + 4\,\delta^2 \frac{\omega^2}{\omega_n^2}}}, \qquad \arg G(j\omega) = -\arctan \frac{2\,\delta \frac{\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}}$$

• Diagramma di Bode delle ampiezze per $\delta \in \{0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1\}$:

• La pendenza -40 db/decade viene tipicamente indicata con il simbolo "-2".

- Per piccoli valori di δ il diagramma reale si discosta sensibilmente da quello asintotico. In particolare per $\delta = 0$ lo scostamento è infinito.
- Il diagramma delle ampiezze ha le seguenti proprietà:
 - 1) per $0 \le \delta \le 1/\sqrt{2}$ il diagramma ha un massimo;
 - 2) per $0 \le \delta \le 1/2$ il diagramma interseca l'asse a destra del punto $\omega = \omega_n$;
 - 3) per $1/2 \le \delta \le 1/\sqrt{2}$ il diagramma interseca l'asse a sinistra del punto $\omega = \omega_n$;
 - 4) per $1/\sqrt{2} \le \delta \le 1$ il diagramma non interseca l'asse delle ascisse ed è pertanto tutta al di sotto della sua approssimazione asintotica.
- <u>Pulsazione di risonanza</u> ω_R . Posto $u = \omega/\omega_n$, il massimo dell'ampiezza corrisponde ad un minimo della funzione

$$(1-u^2)^2 + 4\,\delta^2\,u^2$$

Derivando e uguagliando a zero la derivata, si ottiene

$$-4(1-u^2)u + 8\delta^2 u = 0$$

Trascurando la soluzione nulla si ottiene

$$u_R = \sqrt{1 - 2\,\delta^2} \qquad \rightarrow \qquad \qquad \omega_R = \omega_n\,\sqrt{1 - 2\,\delta^2}$$

• <u>Picco di risonanza</u> M_R : si calcola come modulo della funzione di risposta armonica in corrispondenza della pulsazione ω_R :

$$M_R = \frac{1}{\sqrt{(1 - 1 - 2\,\delta^2)^2 + 4\,\delta^2\,(1 - 2\,\delta^2)}}$$

$$M_R = \frac{1}{2\,\delta\,\sqrt{1-\delta^2}}$$

• Diagramma di Bode della fasi:

• Le pulsazioni ω_a e ω_b sono legate alla pulsazione ω_n dalla relazione:

$$\frac{\omega_n}{\omega_a} = \frac{\omega_b}{\omega_n} = e^{\frac{\pi}{2}\delta} = 4,81^{\delta}$$

• I cambiamenti di pendenza del diagramma asintotico delle fasi avviene alle pulsazioni:

$$\omega_a = \frac{\omega_n}{4.81^{\delta}}, \qquad \qquad \omega_b = 4.81^{\delta} \omega_n$$

- Il coefficiente di smorzamento δ può essere calcolato a partire:
- 1) dal picco di risonanza M_R :

$$M_R = \frac{1}{2\delta\sqrt{1-\delta^2}} \quad \rightarrow \quad \left| \delta = \sqrt{\frac{1}{2}\left(1-\sqrt{1-\frac{1}{M_R^2}}\right)} \right|$$

2) dalle pulsazioni critiche ω_a e ω_b :

$$\frac{\omega_b}{\omega_a} = e^{\pi\delta} \qquad \rightarrow \qquad \qquad \delta = \frac{1}{\pi} \ln \frac{\omega_b}{\omega_a}$$

3) dal guadagno M_{ω_n} della funzione $G(j\omega)$ alla pulsazione $\omega = \omega_n$:

• Nel caso in cui il guadagno statico G(0) non si unitario, il picco di risonanza M_R è definito come il rapporto tra il valore massimo M_{max} e il guadagno statico $M_0 = G(0)$:

$$M_R = \frac{M_{max}}{M_0}$$

Assi nei diagrammi di Bode

• I Diagrammi di Bode usano l'asse orizzontale in scala logaritmica. Considerando l'asse reale R e fissata una origine, una pulsazione ω corrisponde ad un punto sull'asse con coordinata $x = \log_{10} \omega$. Accanto all'asse si possono quindi indicare o i valori della coordinata x oppure direttamente i valori di ω ; questa seconda soluzione è la più comoda.

- Per il disegno qualitativo dei diagrammi conviene memorizzare alcuni valori: $\log_{10} 2 \simeq 0.3$ $\log_{10} 3 \simeq 0.5$ $\log_{10} 5 \simeq 0.7$ $\log_{10} 8 \simeq 0.9$
- L'asse verticale nei diagrammi di ampiezza è graduato in decibel (db):

$$A|_{\mathsf{db}} \stackrel{def}{=} 20 \log_{10} A$$

Con questa scala, le pendenze caratteristiche dei diagrammi di Bode sono $\pm 20~{\rm db/decade},~\pm 40~{\rm db/decade},~{\rm ecc.}~{\rm Per}$ comodità tali pendenze vengono indicate rispettivamente con i SIMBOLI $\pm 1,~\pm 2,~{\rm ecc.}$

N.B.: se la scala verticale fosse semplicemente logaritmica ($y = \log_{10} A$) le pendenze caratteristiche dei diagrammi di Bode sarebbero ± 1 e ± 2 .

 L'asse verticale nei diagrammi di fase può essere graduato sia in radianti sia in gradi. In ogni caso il diagramma delle fasi può essere traslato verso l'alto o verso il basso di multipli interi di 2π, o di 360°, mantenendo inalterato il suo significato. Graficazione "qualitativa" dei diagrammi asintotici di Bode

<u>Primo metodo</u>: somma dei singoli contributi

a) La funzione G(s) viene messa nella forma "a costanti di tempo":

$$G(s) = \frac{10(s-1)}{s(s+1)(s^2+8s+25)} \quad \rightarrow \quad G(s) = -\frac{10}{25} \frac{(1-s)}{s(1+s)(1+\frac{8s}{25}+\frac{s^2}{25})}$$

b) Si tracciano i diagrammi asintotici di Bode delle singole componenti:

$$K = -\frac{10}{25}, \qquad G_1(s) = (1-s), \qquad G_2(s) = \frac{1}{s}, \qquad G_3(s) = \frac{1}{(1+s)}, \qquad G_4(s) = \frac{1}{(1+\frac{8s}{25}+\frac{s^2}{25})}$$

c) Si sommano i contributi delle singole componenti.

Il contributo del termine K è costante: |K| = -7.96 db e $\arg K = -\pi$.

Lo zero instabile (1-s) e il polo stabile $(1+s)^{-1}$ agiscono alla pulsazione $\omega = 1$ e forniscono due contribuiti uguali e contrari nel diagramma delle ampiezze. Il loro contributo nel diagramma delle fasi si somma: l'ampiezza complessiva per $\omega \to \infty$ è $-\pi$.

La coppia di poli complessi coniugati $(1 + \frac{8s}{25} + \frac{s^2}{25})^{-1}$ determina sul diagramma asintotico delle ampiezze una attenuazione di -40 db/dec a partire dalla pulsazione $\omega_n = 5$. Il contributo al diagramma delle fasi è negativo di ampiezza complessiva $-\pi$ al variare di ω . Le pulsazioni alle quali si ha un cambiamento di pendenza del diagramma asintotico delle fasi sono le seguenti

$$\omega_a = \frac{1}{4.81}, \qquad \omega_b = 4.81, \qquad \quad \bar{\omega}_a = \frac{\omega_n}{4.81^{\delta}}, \qquad \bar{\omega}_b = \omega_n 4.81^{\delta}$$

dove $\delta=0.8$ è il coefficiente di smorzamento della coppia di poli complessi coniugati.

La difficoltà nell'utilizzare questo metodo sta nel fatto che la somma dei singoli contributi non è sempre agevole.

Diagrammi asintotici di Bode delle ampiezze e delle fasi della funzione ${\cal G}(s)$

Funzioni approssimanti

- Nei diagrammi di Bode e di Nyquist il comportamento frequenziale di una generica funzione G(s) per s → 0⁺ e per s → ∞ si può studiare facendo riferimento alle funzioni approssimanti G₀(s) e G_∞(s).
- Consideriamo, per esempio, la seguente funzione:

$$G(s) = \frac{10(s-1)}{s(s+1)(s^2+8s+25)}$$

• La *funzione approssimante* $G_0(s)$ si ottiene dalla G(s) per $s \simeq 0$, cioè trascurando tutti i termini in s ad esclusione dei poli o degli zeri nell'origine:

$$G_0(s) = \lim_{s \ge 0} G(s) = \lim_{s \ge 0} \frac{10(\cancel{s} - 1)}{s(\cancel{s} + 1)(\cancel{s}^2 + \cancel{s} + 25)} = \frac{-10}{25s}$$

- In generale si ottiene una funzione del tipo $G_0(s) = \frac{K_0}{s^h}$, dove h è il numero di poli di G(s) nell'origine, cioè il "tipo" di sistema in oggetto.
- La <u>funzione approssimante G_∞(s)</u> si ottiene dalla G(s) per s ≃ ∞, cioè considerando all'interno di ogni fattore della funzione G(s) solo il termine in s a grado più elevato:

$$G_{\infty}(s) = \lim_{s \simeq \infty} G(s) = \lim_{s \simeq \infty} \frac{10(s-1)}{s(s+1)(s^2 + 8s + 25)} = \frac{10}{s^3}$$

- In generale si ottiene una funzione del tipo $G_{\infty}(s) = \frac{K_p}{s^r}$, dove r = n mè il grado relativo della G(s).
- Per le funzioni approssimanti $G_0(s)$ e $G_{\infty}(s)$ è immediato calcolare i moduli e le fasi delle corrispondenti funzioni di risposta armonica:

$$G_0(s) = \frac{-10}{25s} \qquad \Rightarrow \qquad G_0(j\omega) = \begin{cases} |G_0(j\omega)| = \frac{10}{25\omega} \\ \varphi_0 = -\frac{3\pi}{2} \end{cases}$$
$$G_\infty(s) = \frac{10}{s^3} \qquad \Rightarrow \qquad G_\infty(j\omega) = \begin{cases} |G_\infty(j\omega)| = \frac{10}{\omega^3} \\ \varphi_\infty = -\frac{3\pi}{2} \end{cases}$$

Secondo metodo: graficazione "rapida"

Diagramma delle ampiezze

- a) Si individua nella funzione G(s) tutte le pulsazioni in corrispondenza delle quali si ha un cambiamento di pendenza. Tali pulsazioni coincidono con gli zeri reali, i poli reali e le pulsazioni naturali ω_n delle coppie di poli e zeri complessi coniugati della funzione G(s). Nel caso in esame si ha $\omega = 1$ e $\omega = 5$. Tali pulsazioni vengono ordinate in ordine crescente di modulo.
- b) Tenendo conto del fatto che gli zeri (reali o complessi coniugati) determinano un incremento di pendenza (rispettivamente di +1 e di +2) e che, viceversa, i poli (reali o complessi coniugati) determinano un decremento della pendenza (rispettivamente di -1 e di -2), risulta chiaro che la "forma" del diagramma asintotico è già nota a priori.

Nel caso in esame si ha:

In corrispondenza della pulsazione $\omega=1$ non si ha cambiamento di pendenza perchè in quel punto agisce sia un polo che uno zero.

c) La posizione "verticale" del diagramma si determina nel seguente modo: 1) Se la funzione G(s) è di tipo 0, il posizionamento verticale è determinato dal calcolo del guadagno statico G(0).

2) Se il sistema è di tipo 1, o in generale di tipo h, il posizionamento verticale viene fatto calcolando l'esatta posizione di un qualsiasi punto A appartenente al diagramma asintotico a spezzata. Tale calcolo può essere fatto in modo agevole utilizzando le funzioni approssimanti $G_0(s)$ e $G_{\infty}(s)$.

Per calcolare la coordinata β del punto A di ascissa $\bar{\omega} = 5$ è infatti possibile utilizzare la funzione approssimante $G_0(s)$:

$$\beta = |G_0(s)|_{s=j\bar{\omega}} = \left|\frac{-10}{25s}\right|_{s=j5} = \frac{2}{25} = -21.94 \text{ db}.$$

In questo caso è possibile utilizzare anche la funzione approssimante $G_{\infty}(s)$:

$$\gamma = |G_{\infty}(s)|_{s=j\bar{\omega}} = \left|\frac{10}{s^3}\right|_{s=j5} = \frac{2}{25} = -21.94 \text{ db}.$$

d) È ora possibile tracciare il diagramma asintotico complessivo tracciando, a partire dal punto A, i vari tratti della "spezzata", ognuno con la propria pendenza.

Nel caso in esame, per esempio, il tratto di spezzata che precede il punto A si determina individuando il punto B. Questo punto si calcola a partire da A diminuendo la pulsazione di una decade ed aumentando di 20 db l'ampiezza: $B = (0.5, \beta + 20)$.

Allo stesso modo si procede per determinare la pendenza del tratto che segue il punto A. In questo caso la pendenza è -3 e quindi il punto C si determina aumentando la pulsazione di una decade e diminuendo l'ampiezza di 60 db: $C = (50, \beta - 60)$.

Diagramma delle fasi

Anche la graficazione del diagramma asintotico delle fasi può essere fatta "rapidamente" se si procede nel modo seguente.

1) Si individua la fase di partenza φ_0 del diagramma asintotico calcolando la fase iniziale della funzione approssimante $G_0(s)$:

$$\varphi_0 = \arg G_0(j\omega) = \arg \left(\frac{-10}{25s}\right)_{s=j\omega} = -\frac{3\pi}{2}.$$

La fase iniziale φ_0 è comprensiva del segno negativo della costante K e della fase costante $-\frac{\pi}{2}$ introdotta dal polo nell'origine.

2) A partire da φ_0 si costruisce un <u>diagramma a gradoni</u> i cui punti di discontinuitá coincidono con le pulsazioni critiche ω_c di tutti i poli e zeri della funzione G(s). L'ampiezza di ciascuna discontinuitá è pari alla variazione di fase $\Delta \varphi_i$ introdotta dal termine dinamico che ha generato la discontinuitá.

Le variazioni di fase $\Delta \varphi_i$ sono sempre un multiplo di $\frac{\pi}{2}$ e possono essere sia positive che negative in funzione del fatto che il termine dinamico considerato sia un polo, uno zero, sia stabile o instabile.

Nel caso in esame i primi due termini da prendere in considerazione sono il polo stabile $(s+1)^{-1}$ e lo zero instabile (s-1) alla pulsazione $\omega = 1$. Ciascuno di essi introduce uno sfasamento pari a $-\frac{\pi}{2}$ per cui il loro contributo complessivo è $-\pi$ che va disegnata verso il basso a partire dalla fase iniziale $\varphi = -\frac{3\pi}{2}$.

l due poli complessi coniugati stabili $(1+\frac{8s}{25}+\frac{s^2}{25})^{-1}$ introducono uno sfasamento di ampiezza $-\pi$ in corrispondenza della pulsazione $\omega_n = 5$. Il loro contributo va disegnato verso il basso nella fascia $[-\frac{5\pi}{2}, -\frac{7\pi}{2}]$.

3) Il diagramma asintotico delle fasi si ottiene infine dal diagramma a gradoni sostituendo ad ogni discontinuità l'interpolazione asintotica specifica dell'elemento dinamico che agisce in quel punto $\bar{\omega}$: a) nel caso di poli o zeri reali si utilizzano i valori $\omega_a = \bar{\omega}/4.81$ e $\omega_b = 4.81\bar{\omega}$; b) nel caso di poli o zeri complessi coniugati si utilizzano i valori $\omega_a = \bar{\omega}/4.81$ e $\omega_b = 4.81\delta$ e $\omega_b = 4.81\delta$.

Diagrammi asintotici di Bode: esercizi

• Tracciare i diagrammi asintotici di Bode della seguente funzione G(s):

$$G(s) = \frac{60 \left(s^2 + 0.8 \, s + 4\right)}{s(s - 30)(1 + \frac{s}{200})^2}.$$

Pendenza iniziale: -20 db/dec. Pulsazioni critiche: $\omega = 2$ (due zeri complessi coniugati stabili), $\omega = 30$ (un polo instabile) e $\omega = 200$ (due poli stabili).

• Tracciare i diagrammi asintotici di Bode della seguente funzione G(s):

$$G(s) = \frac{1470(s+300)}{s(s-7)(s^2+15s+900)}.$$

Pendenza iniziale: -20 db/dec. Pulsazioni critiche: $\omega = 7$ (polo instabile), $\omega = 30$ (due poli complessi coniugati stabili) e $\omega = 300$ (uno zero stabile).

• Tracciare i diagrammi asintotici di Bode della seguente funzione G(s):

$$G(s) = \frac{50 \, (5-s)^2}{s \, (s^2 - 18 \, s + 900)(10 \, s + 5)}.$$

Pendenza iniziale: -20 db/dec. Pulsazioni critiche: $\omega = 0.5$ (un polo stabile), $\omega = 5$ (due zeri reali instabili) e $\omega = 30$ (due poli complessi coniugati instabili).

• Tracciare i diagrammi asintotici di Bode della seguente funzione G(s):

$$G(s) = \frac{s(s+400)}{(1+3s)(s^2-1.5s+9)}.$$

Pendenza iniziale: +20 db/dec. Pulsazioni critiche: $\omega = 0.333$ (un polo stabile), $\omega = 3$ (due poli complessi coniugati instabili) e $\omega = 400$ (uno zero reale stabile).

• Si faccia riferimento ai diagrammi di Bode mostrati in figura. Nei limiti della precisione consentita dal grafico calcolare l'espressione della funzione G(s).

La pendenza iniziale indica la presenza di un polo nell'origine. Il valore di δ della coppia di poli complessi coniugati è $\delta = 0.5$ perchè dal grafico risulta chiaro che per $\omega_n = 20$ il diagramma reale coincide con quello asintotico.

La funzione di trasferimento del sistema è la seguente:

$$G(s) \simeq \frac{\overbrace{800}^{K} (s+1)(s+5)}{s \left(s^2 - 20 \, s + 400\right)} = \frac{10 \left(1+s\right)(1+0.2 \, s)}{s \left(1-0.05 \, s + 0.025 \, s^2\right)}.$$

Il valore del guadagno K della funzione G(s) si determina imponendo che il guadagno dell'approssimante $G_0(s)$ per $\omega = 1$ sia uguale a β :

$$|G_0(s)|_{s=j} = \left|\frac{5K}{400s}\right|_{s=j} = \frac{K}{80} = 10 \quad \to \quad K = 800.$$

ll valore del guadagno K puó essere determinato anche imponendo che il guadagno dell'approssimante $G_\infty(s)$ per $\omega = 20$ sia uguale a $\gamma = 32$ db:

$$|G_{\infty}(s)|_{s=j20} = \left|\frac{K}{s}\right|_{s=j20} = \frac{K}{20} = 32 \text{ db} = 40 \quad \rightarrow \quad K = 800.$$

• Si faccia riferimento ai diagrammi di Bode mostrati in figura. Nei limiti della precisione consentita dal grafico calcolare l'espressione della funzione G(s).

Guadagno β per $\omega = 0.2$:

 $\beta = 40 \text{ db} = 100.$

Pulsazioni critiche ω :

- $0 \rightarrow un polo$
- $0.2 \rightarrow$ uno polo instabile
 - $1 \rightarrow due zeri c.c stabili$
- $8 \rightarrow$ uno zero instabile
- $20 \rightarrow$ uno polo stabili

Coefficiente δ :

 $M_{\alpha_n} = 0.4 \quad \rightarrow \quad \zeta = 0.2.$

La pendenza iniziale "-1" indica la presenza di un polo nell'origine. Il valore di $\zeta = 0.2$ della coppia di zeri complessi coniugati si determina dal valore $M_{\alpha_n} = -8 \text{ db}$ in corrispondenza della pulsazione $\alpha_n = 1$.

La funzione di trasferimento del sistema è la seguente:

$$G(s) \simeq \frac{\overbrace{100}^{K} (s^2 + 0.4 \, s + 1)(s - 8)}{s \, (s - 0.2)(s + 200)} = \frac{20 \, (1 + 0.4 \, s + s^2)(1 - 0.125 \, s)}{s \, (1 - 5 \, s)(1 + 0.005 \, s)}.$$

Il valore del guadagno K della funzione G(s) si determina imponendo che il guadagno dell'approssimante $G_0(s)$ per $\omega = 0.2$ sia uguale a β :

$$|G_0(s)|_{s=j0.2} = \left|\frac{8K}{40s}\right|_{s=j0.2} = \frac{8K}{8} = 100 \quad \to \quad K = 100.$$

Il valore del guadagno K puó essere determinato anche imponendo che il guadagno dell'approssimante $G_{\infty}(s)$ per $\omega = 200$ sia uguale a $\gamma = 40$ db:

$$|G_{\infty}(s)|_{s=j200} = K = 40 \text{ db} = 100 \quad \rightarrow \quad K = 100.$$

• Si faccia riferimento ai diagrammi di Bode mostrati in figura. Calcolare: 1) l'espressione analitica della funzione G(s); 2) la risposta a regime $y_{\infty}(t)$ del sistema G(s) quando in ingresso è presente il segnale: $x(t) = 5\sin(0.02t) + 3\cos(400t)$.

1) La funzione di trasferimento del sistema è la seguente:

$$G(s) = \frac{\overbrace{400}^{K} s(s+1)}{(s^2 + 0.12 s + 0.04)(s+20)} = \frac{500 s(1+s)}{(1+3 s+25 s^2)(1+0.05 s)}.$$

Il valore del guadagno K della funzione G(s) si determina imponendo che il guadagno dell'approssimante $G_0(s)$ per $\omega = 0.2$ sia uguale a β :

$$|G_0(s)|_{s=j0.2} = \left|\frac{Ks}{0.8}\right|_{s=j0.2} = \frac{K0.2}{0.8} = 100 \quad \to \quad K = 400.$$

2) La risposta a regime del sistema G(s) al segnale dato è la seguente:

$$y_{\infty}(t) = 5 |G(0.02j)| \sin(0.02t + \arg G(0.02j)) +3 |G(400j)| \cos(400t + \arg G(400j)) = 50.4 \sin(0.02t + 87.62^\circ) + 2.996 \cos(400t - 87.26^\circ).$$

l valori di |G(0.02j)|, $\arg G(0.02j))$, |G(400j)| e $\arg G(400j))$ si leggono direttamente sui diagrammi di Bode dei moduli e delle fasi.

 $T_a = \frac{3}{0.02} = 150$ s.

 $p_{1,2} = -0.02 \pm j \, 0.199.$

 $y_{\infty} = G(0) = 100.$

Tempo di assestamento:

Periodo T_{ω} :

Valore a regime:

$$T_{\omega} = \frac{2\pi}{0.199} \simeq 31.57 \text{ s}$$

180 y_m 160 140 120 $\eta(t)$ y_{∞} 80 60 40 20 $T_{\underline{m}}$ T_{a} 0 50 100 150 200 250 Time [s]

Diagramma dei moduli

ura. Risposta al gradino

 T_{ω}

Pulsazione
$$\omega [rad/s]$$

1) L'espressione analitica della funzione $G(s)$ è la seguente:

$$G(s) = \frac{32 (s+5)^2}{(s^2+0.04 s+0.04)(s+200)} = \frac{100 (1+0.2 s)^2}{(1+s+25 s^2)(1+0.005 s)}.$$
2) L'andamento della risposta al gradino del sistema $G(s)$ è mostrato in figu
Poli dominanti:

200

• Si faccia riferimento ai diagrammi di Bode mostrati in figura. Nei limiti della

precisione consentita dal grafico: 1) ricavare l'espressione analitica della funzio-

ne G(s); 2) disegnare l'andamento qualitativo della risposta al gradino unitario.

Guadagno statico:

$$G(0) = 100.$$

Pulsazioni critiche ω :

 $0.2 \rightarrow$ due poli c.c. stabili

$$5
ightarrow$$
 due zeri stabili

 $200 \rightarrow$ uno zero stabile

Coefficiente δ :

10

10