Contents

1 Trajectory Planning ... 1
 1.1 A General Overview on Trajectory Planning 1
 1.2 One-dimensional Trajectories 3
 1.3 Mechanical Cams and Electronic Cams 4
 1.4 Multi-dimensional Trajectories 6
 1.5 Contents and Structure of this Book 8
 1.6 Notation ... 10

Part I Basic Motion Profiles

2 Analytic Expressions of Elementary Trajectories 15
 2.1 Polynomial Trajectories 15
 2.1.1 Linear trajectory (constant velocity) 17
 2.1.2 Parabolic trajectory (constant acceleration) 18
 2.1.3 Trajectory with asymmetric constant acceleration 21
 2.1.4 Cubic trajectory 23
 2.1.5 Polynomial of degree five 26
 2.1.6 Polynomial of degree seven 28
 2.1.7 Polynomials of higher degree 30
 2.2 Trigonometric Trajectories 42
 2.2.1 Harmonic trajectory 42
 2.2.2 Cycloidal trajectory 43
 2.2.3 Elliptic trajectory 45
 2.3 Exponential Trajectories 47
 2.4 Trajectories Based on the Fourier Series Expansion 51
 2.4.1 Gutman 1-3 ... 53
 2.4.2 Freudenstein 1-3 54
 2.4.3 Freudenstein 1-3-5 55
3 Composition of Elementary Trajectories

3.1 Linear Trajectory with Circular Blends

3.2 Linear Trajectory with Parabolic Blends (Trapezoidal)

3.2.1 Trajectory with preassigned acceleration

3.2.2 Trajectory with preassigned acceleration and velocity

3.2.3 Synchronization of several trapezoidal trajectories

3.2.4 Trajectory through a sequence of points

3.2.5 Displacement time of a trapezoidal trajectory

3.2.6 Trajectory with assigned durations T and T_a

3.2.7 Trajectory with non-null initial and final velocities

3.3 Linear Trajectory with Polynomial Blends

3.4 Trajectory with Double S Velocity Profile

3.4.1 Computation of the trajectory for $q_1 > q_0$

3.4.2 Computation of the trajectory for $q_1 < q_0$

3.4.3 Double S with null initial and final velocities

3.4.4 On-line computation of the double S trajectory

3.4.5 Displacement time of a double S trajectory

3.4.6 Double S trajectory with assigned duration of the different phases

3.5 Fifteen Segments Trajectory

3.6 Piecewise Polynomial Trajectory

3.7 Modified Trapezoidal Trajectory

3.8 Modified Sinusoidal Trajectory

3.9 Modified Cycloidal Trajectory

3.10 Constant Velocity/Acceleration Trajectories with Cycloidal or Harmonic Blends

3.10.1 Constraints on the velocity profile

3.10.2 Constraints on the acceleration profile

3.10.3 Minimum-time trajectories

3.11 Trajectories with Constant Acceleration and Cycloidal/Cubic Blends

4 Multipoint Trajectories

4.1 Interpolation by Polynomial Functions

4.2 Orthogonal Polynomials

4.3 Trigonometric Polynomials

4.4 Cubic Splines

4.4.1 Computation of the coefficients for assigned initial and final velocities

4.4.2 Periodic cubic splines

4.4.3 Cubic splines with assigned initial and final velocities: computation based on the accelerations

4.4.4 Cubic splines with assigned initial and final velocities and accelerations

4.4.5 Smoothing cubic splines
4.4.6 Choice of the time instants and optimization of cubic splines ... 188
4.5 B-spline Functions for Trajectories with High Degree of Continuity 194
4.6 Nonlinear Filters for Optimal Trajectory Planning ... 208
4.6.1 Online trajectory planner with velocity, acceleration and jerk constraints 209
4.6.2 Online trajectory planner with velocity and acceleration constraints 216

Part II Elaboration and Analysis of Trajectories

5 Operations on Trajectories ... 223
5.1 Geometric Modification of a Trajectory 223
5.2 Scaling in Time .. 228
5.2.1 Kinematic scaling ... 230
5.2.2 Dynamic Scaling ... 236
5.3 Synchronization of Trajectories 241

6 Trajectories and Actuators ... 245
6.1 Trajectories and Electric Motors 245
6.1.1 Trajectories and choice of the actuator 247
6.2 Characteristics of the Motion Profiles 250
6.2.1 Comparison between trapezoidal and double S trajectories ... 256

7 Dynamic Analysis of Trajectories 265
7.1 Models for Analysis of Vibrations 265
7.1.1 Linear model with one degree of freedom 266
7.1.2 Linear model with \(n \) degrees of freedom 267
7.1.3 Nonlinear model with one degree of freedom 269
7.1.4 Nonlinear model with \(n \) degrees of freedom 270
7.2 Analysis of the Trajectories in the Time Domain 271
7.3 Analysis of the Trajectories in the Frequency Domain ... 285
7.3.1 Frequency spectrum of some elementary trajectories 287
7.3.2 Numerical computation of the frequency spectrum of generic trajectories 294
7.3.3 Harmonic content of periodic trajectories 299
7.3.4 Scaling and frequency properties of a trajectory 303
7.4 Frequency Modifications of Trajectories 304
7.4.1 Polydyne and splinedyne functions 305
7.4.2 Input filtering and shaping 318
7.4.3 Feedforward based on the inversion of the plant dynamics ... 330
Part III Trajectories in the Operational Space

8 Multidimensional Trajectories and Geometric Path Planning

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>341</td>
</tr>
<tr>
<td>8.1.1 Continuity of the geometric path and continuity of the trajectory</td>
<td>343</td>
</tr>
<tr>
<td>8.1.2 Global and local interpolation/approximation</td>
<td>346</td>
</tr>
<tr>
<td>8.2 Orientation of the Tool</td>
<td>347</td>
</tr>
<tr>
<td>8.2.1 Case of independent position and orientation</td>
<td>347</td>
</tr>
<tr>
<td>8.2.2 Case of position and orientation coupled</td>
<td>353</td>
</tr>
<tr>
<td>8.3 Definition of the Geometric Path Through Motion Primitives</td>
<td>356</td>
</tr>
<tr>
<td>8.4 Global Interpolation</td>
<td>359</td>
</tr>
<tr>
<td>8.4.1 Definition of the set ${\bar{u}_k}$</td>
<td>359</td>
</tr>
<tr>
<td>8.4.2 Cubic B-spline interpolation</td>
<td>360</td>
</tr>
<tr>
<td>8.5 Global Approximation</td>
<td>364</td>
</tr>
<tr>
<td>8.5.1 Knots choice</td>
<td>366</td>
</tr>
<tr>
<td>8.6 A Mixed Interpolation/Approximation Technique</td>
<td>368</td>
</tr>
<tr>
<td>8.7 Smoothing Cubic B-splines</td>
<td>371</td>
</tr>
<tr>
<td>8.7.1 Smoothing B-splines with assigned start/end points and directions</td>
<td>373</td>
</tr>
<tr>
<td>8.8 B-spline Functions for Trajectories with High Degree of Continuity</td>
<td>376</td>
</tr>
<tr>
<td>8.9 Use of Nurbs for Trajectory Generation</td>
<td>391</td>
</tr>
<tr>
<td>8.10 Local Interpolation with Bézier Curves</td>
<td>393</td>
</tr>
<tr>
<td>8.10.1 Computation of the tangent and curvature vectors</td>
<td>394</td>
</tr>
<tr>
<td>8.10.2 Cubic Bézier curves interpolation</td>
<td>395</td>
</tr>
<tr>
<td>8.10.3 Quintic Bézier curves interpolation</td>
<td>400</td>
</tr>
<tr>
<td>8.11 Linear Interpolation with Polynomial Blends</td>
<td>406</td>
</tr>
</tbody>
</table>

9 From Geometric Paths to Trajectories

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>415</td>
</tr>
<tr>
<td>9.2 Constant Scaling</td>
<td>415</td>
</tr>
<tr>
<td>9.3 Generic Motion Law</td>
<td>416</td>
</tr>
<tr>
<td>9.4 Constant Feed Rate</td>
<td>418</td>
</tr>
<tr>
<td>9.5 Generic Feed Rate Profile</td>
<td>421</td>
</tr>
<tr>
<td>9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks</td>
<td>424</td>
</tr>
<tr>
<td>9.6.1 Linear trajectory with polynomial blends</td>
<td>429</td>
</tr>
<tr>
<td>9.6.2 B-spline trajectory</td>
<td>440</td>
</tr>
<tr>
<td>9.6.3 Smoothing B-spline trajectory</td>
<td>445</td>
</tr>
<tr>
<td>9.6.4 B-spline approximation of a trajectory based on motion primitives</td>
<td>449</td>
</tr>
</tbody>
</table>
Part IV Appendices

A Numerical Issues .. 457
A.1 Parameters of normalized polynomials $q_N(\tau)$ 457
A.2 Parameters of the Trajectory ‘4-3-4’ 461
A.3 Solution of the Equation $Mk = q$ 461
A.4 Efficient Evaluation of Polynomial Functions 463
A.5 Numerical Solution of Tridiagonal Systems 464
 A.5.1 Tridiagonal systems .. 464
 A.5.2 Cyclic tridiagonal systems 465

B B-spline, Nurbs and Bézier curves 467
B.1 B-spline Functions .. 467
 B.1.1 B-spline basis functions 467
 B.1.2 Definition and properties of B-splines 471
 B.1.3 Evaluation of a B-spline curve 474
 B.1.4 Derivative of a B-spline curve 475
 B.1.5 Conversion from B-form to Piecewise Polynomial form
 (pp-form) .. 479
B.2 Definition and Properties of Nurbs 481
B.3 Definition and Properties of Bézier Curves 483
 B.3.1 Evaluation of a Bézier curve 484
 B.3.2 Derivatives of a Bézier curve 486

C Representation of the Orientation 489
C.1 Rotation Matrices .. 489
 C.1.1 Elementary rotation matrices 490
C.2 Angle-Axis Representation .. 490
C.3 Euler Angles .. 491
C.4 Roll-Pitch-Yaw Angles .. 493

D Spectral Analysis and Fourier Transform 495
D.1 Fourier Transform of a Continuous Time Function 495
 D.1.1 Main properties of the Fourier transform 496
D.2 Fourier Series of a Periodic Continuous Function 497
D.3 Fourier Transform of a Discrete Time Function 498
 D.3.1 Discrete Fourier transform 499
D.4 Fourier Analysis of Signals Using DFT (and FFT) 500

References ... 503

Index ... 509