Trajectory Planning for Automatic Machines and Robots
 Luigi Biagiotti, Claudio Melchiorri

Errata

Changes from first printing to Jenuary 16, 2014
Conventions: each line of text (including figures' captions) and each line of a displayed equation are counted as a line. Negative line numbers mean number of lines from the bottom of the page. First line on page $=1$, last line on page $=-1$.

- Page 48, line -1. (October 23, 2009) In the expression for the computation of v_{c} an exponential function is missing. The right expression is

$$
\mathrm{v}_{c}=\frac{1}{2 \int_{0}^{\frac{1}{2}} e^{-\sigma f(\tau, \lambda)} d \tau}
$$

- Page 49, line 6. (October 23, 2009) In the expression of the acceleration $\ddot{q}_{N}(\tau)$ of the normalized trajectory, the sign d of the derivative is missing. The correct expression is

$$
\ddot{q}_{N}(\tau)=-\mathrm{v}_{c} \sigma \frac{d f(\tau, \lambda)}{d \tau} e^{-\sigma f(\tau, \lambda)}
$$

- Page 89, lines 12-16. (November 3, 2009) The expression of the double S trajectory for $t \in[T-$ $T_{d}+T_{j 2}, T-T_{j 2}$] can be simplified in the following way

$$
\begin{cases}q(t) & =q_{1}-\mathrm{v}_{1}(T-t)+\frac{\mathrm{a}_{l i m_{d}}}{6}\left(3(T-t)^{2}-3 T_{j 2}(T-t)+T_{j 2}^{2}\right) \\ \dot{q}(t) & =\mathrm{v}_{1}-\mathrm{a}_{l i m_{d}}\left(T-t-\frac{T_{j 2}}{2}\right) \\ \ddot{q}(t) & =-\mathrm{j}_{\max } T_{j 2}=\mathrm{a}_{l i m_{d}} \\ q^{(3)}(t) & =0\end{cases}
$$

- Page 91, Fig 3.18. (David Richter, June 25, 2013) The rectangular block with the text: "Compute the trajectory parameters according to (3.26a), (3.26b) and (3.26b)" should say "Compute the trajectory parameters according to (3.26a), (3.26b), and (3.26c)".
- Page 179, Example 4.9 (Philip Freeman, October 22, 2010). The numerical values of matrix \boldsymbol{A} and vectors \boldsymbol{c} and $\boldsymbol{\omega}$ are wrong. The right expressions result

$$
\boldsymbol{A}=\left[\begin{array}{ccccccc}
15 & 2.5 & 0 & 0 & 0 & 0 & 0 \\
0 & 9 & 2 & 0 & 0 & 0 & 0 \\
0 & 2 & 6 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 6 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 14 & 5 & 0 \\
0 & 0 & 0 & 0 & 5 & 13 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 9
\end{array}\right]
$$

$$
\boldsymbol{c}=\left[\begin{array}{lllllll}
-36, & 15, & 39, & -12, & -10.8, & -5.2, & -20
\end{array}\right]^{T}
$$

and

$$
\boldsymbol{\omega}=\left[\begin{array}{lllllll}
-2.42, & 0.12, & 6.98, & -3.09, & -0.22, & -0.32, & -2.17
\end{array}\right]^{T}
$$

- Page 326, line 14. (March 30, 2010) The transfer function $G(s)=\frac{2 s+1}{s^{2}+2 s+100}$ must be changed in $G(s)=\frac{2 s+100}{s^{2}+2 s+100}$.
- Page 329, line -6 . (March 30, 2010) It is necessary to specify the meaning of n_{i}. Therefore at the end of the sentence "where the pairs $\left(p_{i}, p_{i}^{\star}\right)$ represent the (complex conjugate) poles of $G(z)$ " it is necessary to add "of multiplicity n_{i} ".
- Page 329, line -4. (March 30, 2010) Under the first block of the figure it is necessary to replace $\left(\omega \psi_{n 1}, \delta_{1}\right)$ with $\left(\omega_{n 1}, \delta_{1}\right)$.
- Page 409, line 7. (Pedro Reboredo, July 6, 2009) In the expression of $\boldsymbol{a}_{4}=5 \boldsymbol{p}_{0}-4 \boldsymbol{p}_{1}+6 \boldsymbol{p}_{2}-4 \boldsymbol{p}_{3}+\boldsymbol{p}_{4}$ the coefficient of \boldsymbol{p}_{0} is 1 and not 5 , therefore the right expression is $\boldsymbol{a}_{4}=\boldsymbol{p}_{0}-4 \boldsymbol{p}_{1}+6 \boldsymbol{p}_{2}-4 \boldsymbol{p}_{3}+\boldsymbol{p}_{4}$.
- Page 411, line -6. (Jenuary 16, 2014) The coefficient c is not equal to zero. Therefore, $c=$ $-900\left|\boldsymbol{p}_{5, k}-\boldsymbol{p}_{0, k}\right|^{2}$.
- Page 425, line 13. (July 15, 2014) The expression $q\left(t_{f}\right)=\ldots$ should be $q\left(t_{\max }\right)=\ldots$.
- Page 425 , line -2. (July 15,2014) The expression $q\left(t_{f}\right)=0$ should be $q\left(t_{\text {min }}\right)=0$.
- Page 486, line 15. (Pedro Reboredo, July 6, 2009) In the expression of $\boldsymbol{a}_{4}=5 \boldsymbol{p}_{0}-4 \boldsymbol{p}_{1}+6 \boldsymbol{p}_{2}-4 \boldsymbol{p}_{3}+\boldsymbol{p}_{4}$ the coefficient of \boldsymbol{p}_{0} is 1 and not 5 , therefore the right expression is $\boldsymbol{a}_{4}=\boldsymbol{p}_{0}-4 \boldsymbol{p}_{1}+6 \boldsymbol{p}_{2}-4 \boldsymbol{p}_{3}+\boldsymbol{p}_{4}$.
- Page 467, line 11. (September 6, 2009) The word "coefficient" should be plural.

