Systems and Control Theory Master Degree in ELECTRONICS ENGINEERING

(http://www.dii.unimore.it/~lbiagiotti/SCT.html)

Exercises #5

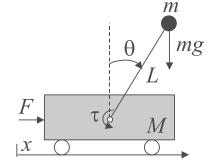
Useful commands and scheme in the Matlab/Simulink environment	
With reference to the system	
	$\left(egin{array}{rcl} \dot{x}&=&Ax+Bu\ y&=&Cx+Du \end{array} ight)$
Controllability matrix	CO = ctrb(A,B)
Observability matrix	OB = obsv(A,C)
Rank of a marix M	rank(M)
Eigenvalues of a matrix \boldsymbol{M}	E = eig(M)
Computation the feedback control law $u = -Kx$ for single input systems	K = acker(A,B,P) where P is the vector of the desired eigenvlues
Computation the feedback control law $u = -Kx$ (N.B. any number of in- puts but no eigenvalue should have a multiplicity greater than the number of inputs)	K = place(A,B,P) where <code>P</code> is the vector of the desired eigenvlues
With reference to the asymp- totic estimator $\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + L(y(t) - \hat{y}(t)),$ computation of the gain L	L = acker(A',C',Po)' where Po is the vector of the desired eigenvlues (single output systems)
	L = place(A', C', Po)' where Po is the vector of the desired eigenvlues, whose multiplicity should be not greater than the number of outputs
Solution of the continuous-time algebraic Riccati equation	[S,E,K] = care(A,B,Q,R) where S is the solution of the equation, E are the closed-loop eigenvalues and K is the Kalman gain $(u(t) = -kx(t))$
Solution of the continuous-time LQ op- timal control problem	[K,S,E] = lqr(A,B,Q,R) where S is the solution of the equation, E are the closed-loop eigenvalues and K is the Kalman gain $(u(t) = -kx(t))$

Text of the exercises

Design an M-file (exercise.m) that, with the help of other M-files and SIMULINK schemes if necessary, solves the following problems.

Let's consider the cart-pole system shown in the figure. By assuming that the mass of the cart is M and the mass m of the inverted pendulum is lumped at the end of massless rigid rod, the model of the system is:

 $\begin{cases} x_1 = x_2 \\ \dot{x}_2 = \frac{m L x_4^2 \sin(x_3) - m g \sin(x_3) \cos(x_3) + u}{M + m (\sin(x_3))^2} \\ \dot{x}_3 = x_4 \\ \dot{x}_4 = \frac{-m L x_4^2 \sin(x_3) \cos(x_3) + (M + m) g \sin(x_3) - u \cos(x_3)}{L (M + m (\sin(x_3))^2)} \end{cases}$



where the state variables are

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T = \begin{bmatrix} x & \dot{x} & \theta & \dot{\theta} \end{bmatrix}^T$$

and the input u = F is the force applied to the cart.

- 1. By considering the numerical values m = 0.1 kg, M = 1 kg, L = 1 m, g = 9.81 m/s², build the Simulink model that allows to simulate the dynamics of the nonlinear system. Assume that the measured variables are the cart position x and the pendulum angular position θ , i.e. $y = [x, \theta]^T$.
- 2. Linearize the system about the equilibrium point $x_e = [\bar{x} \ 0 \ 0 \ 0]^T$, where \bar{x} is a generic cart position (in the Simulink model assume $\bar{x} = 1$), corresponding to the input $u_e = 0$ and analyze its stability.
- 3. Design a LQ regulator for the linearized system that minimizes the performance index

$$J = \frac{1}{2} \int_0^\infty 5\delta x^2(t) + \delta\theta^2(t) + \delta u^2(t) \, dt$$
 (1)

Simulate the evolution of the controlled (linear) system from the initial conditions $\delta x_0 = [0 \ 0 \ 0.55 \ 0]^T$ (duration of the simulation 6s). Plot in the same figure (2 subplots) the evolution of $\delta x(t)$ (1st subplot) and $\delta \theta(t)$ (2nd subplot).

- 4. After having analyzed the observability of the system, design an asymptotic state estimator and insert it in the Simulink scheme. Plot in a new figure the evolution of $\delta x(t)$ and $\delta \theta(t)$ obtained with the same initial conditions of previous point and in a new figure compare the components of the actual state and those of the estimated state.
- 5. Apply the dynamic output feedback to the nonlinear system and simulate the evolution from the initial condition $x_e + \delta x_0$. Plot in a new figure the evolution of x(t) and $\theta(t)$.
- 6. Assume that the first component of the equilibrium point, i.e. \bar{x} , is varied according to a cubic polynomial law from the initial value $\bar{x}_0 = 0$ ($t_0 = 3$) to the final value $\bar{x}_1 = 5$ ($t_1 = 15$). The equation of a cubic polynomial as a function of time is

$$q(t) = h(3\tau^2 - 2\tau^3)$$
 with $\tau = \frac{t - t_0}{T}$ and $h = q_1 - q_0$.

Simulate the behavior of the controlled nonlinear system starting from the initial condition $x_e + \delta x_0$ with $x_e = [\bar{x}_0 \ 0 \ 0 \ 0]^T$ (duration of the simulation 20s) and plot the evolution of x(t) and $\theta(t)$. Superimposed to x(t) plot the signal $\bar{x}(t)$.