Prof. Biagiotti 🗆

Controlli Automatici - Parte A

Ingegneria Meccanica e Ingegneria del Veicolo

Compito del 1 febbraio 2018 - Quiz

Per ciascuno dei seguenti quesiti (si considerino solo le domande numerate normalmente o che recano il nome del docente con cui si è seguito il corso), segnare con una crocetta le risposte che si ritengono corrette. Alcuni quesiti possono avere più risposte corrette.

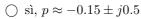
I quiz si ritengono superati se vengono individuate almeno metà delle risposte esatte (punti 5.5 su 11), diversamente il compito verrà ritenuto insufficiente a prescindere dal risultato della seconda prova.

1. Quali dei seguenti sistemi sono asintoticamente stabili?

$$\bigcirc G(s) = \frac{s+2}{s(s+3)(2s+1)}$$
$$\bigcirc G(s) = \frac{s+2}{(s+1)^2(s+3)}$$

$$\bigcirc G(s) = \frac{s-2}{(3s+1)(s^2+4)}$$
$$\bigcirc G(s) = \frac{s+2}{(3s+1)(s^2+s+4)}$$

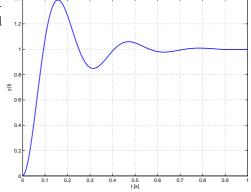
2. A partire dalla risposta al gradino unitario mostrata in figura è possibile stimare la posizione dei poli dominanti del sistema?



$$\bigcirc$$
 sì, $p \approx -1.5 \pm j2$

$$\bigcirc$$
 sì, $p \approx -6 \pm j20$

O no



3. L'evoluzione libera del sistema $2\dot{y}(t) + by(t) = 0$ partendo dalla condizione iniziale y(0) = 3 è:

$$y(t) = 3(1 - e^{-\frac{2}{b}t})$$

$$\bigcirc y(t) = 3 e^{-\frac{2}{b}t}$$

$$y(t) = \frac{3}{2}e^{-\frac{b}{2}t}$$

$$() y(t) = 3e^{-\frac{b}{2}t}$$

4. Il valore iniziale della risposta all'impulso g(t) del sistema $G(s) = \frac{5s+1}{s^2+3s+4}$ vale:

- \bigcirc 5
- $\bigcirc 1/4$
- \bigcirc 0
- $\bigcirc \propto$

5. La funzione di trasferimento $G(s)=\frac{Y(s)}{X(s)}$ corrispondente all'equazione differenziale $2\ddot{y}+4\dot{y}+y=\ddot{x}+5\dot{x}+3x$ è:

$$\bigcirc G(s) = \frac{s^2 + 5s + 3}{2s^3 + 4s^2 + s}$$

$$\bigcirc G(s) = \frac{s^2 + 5s + 3}{2s^3 + 4s + 1}$$

$$\bigcirc G(s) = \frac{2s^3 + 4s + 1}{s^2 + 5s + 3}$$

6. Se al siste	ema $y(t) + \dot{y}(t) =$	=2u(t) si applica l'ingres	so $u(t) = \sin(t)$, a regime	e l'uscita sarà:
$\bigcirc y(t)$	$=\frac{1}{\sqrt{2}}\sin(t+45^{\circ})$)		
	$=\frac{2}{\sqrt{2}}\sin(t-45^{\circ})$			
	$=\frac{2}{\sqrt{2}}\sin(t+45^{\circ})$			
	$= \frac{1}{\sqrt{2}}\sin(t - 45^o)$			
7. Se la funz	vione d'anello $L(arepsilon)$	s) di un sistema retroazio	onato presenta un polo ne	ell'origine:
○ l'err	ore a regime per	ingresso a gradino è nullo)	
○ l'err	ore a regime per	ingresso a rampa è nullo		
○ l'err	ore a regime per	ingresso a rampa è diver	so da zero e costante	
○ l'err	ore a regime per	ingresso a parabola è infi	nito	
		ordine a poli complessi co osizione dei poli nel piano		picco di risonanza M_R rimane
○ su d	ue semirette usce	enti dall'origine		
○ su d	i una circonferen	za con centro nell'origine		
○ su d	una circonferen	za con centro in -1		
\bigcirc su d	i una retta parall	ela all'asse immaginario		
		equilibrio $\bar{u} = 1$, indicaz $\dot{u}(t) = x_1^3(t) + u(t)$ $\dot{u}(t) = x_1(t) + x_2^2(t)$	re queli dei seguenti risu	ltano stati di equilibrio per il
$\bigcirc \bar{x}$ =	$= \left[\begin{array}{c} -1 \\ -1 \end{array} \right]$	$\bigcirc \ \bar{x} = \left[\begin{array}{c} -1 \\ 1 \end{array} \right]$	$\bigcirc \ \bar{x} = \left[\begin{array}{c} 1 \\ -1 \end{array} \right]$	$\bigcirc \ \bar{x} = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$
10. Il diagrar	nma di Bode dell	e ampiezze di un sistema	G(s) di tipo 2 e avente	grado relativo 3 presenta:
() pend	lenza di −40dB/	$\operatorname{dec} \operatorname{per} \omega \to 0 \operatorname{e} \operatorname{pendenz}$	a di -60 dB/dec per ω –	$ ightarrow \infty$
	,	$\operatorname{dec} \operatorname{per} \omega \to 0 \operatorname{e} \operatorname{pendenz}$, -	
		$\operatorname{dec} \operatorname{per} \omega \to 0$ e pendenz		
O pend	lenza di +40dB/	dec per $\omega \to 0$ e pendenz	a di +60dB/dec per ω -	$ ightarrow \infty$

Ho seguito il corso con

Prof. Giarré □

Prof. Biagiotti 🗆

Controlli Automatici - Parte A

Ingegneria Meccanica e Ingegneria del Veicolo

Compito del 1 febbraio 2018 - Esercizi

Rispondere in maniera analitica ai seguenti quesiti (gli studenti dovranno rispondere ai quesiti contrassegnati solo con lettere o col nome del docente di cui hanno seguito il corso più una lettera). I problemi e le domande a risposta aperta si ritengono superati se vengono conseguiti almeno metà dei punti totali (11 su 22), diversamente il compito verrà ritenuto insufficiente a prescindere dal risultato della prima prova.

a) Determinare la trasformata di Laplace $X_i(s)$ dei seguenti segnali temporali $x_i(t)$:

$$x_1(t) = \begin{cases} 0 & t < 3 \\ e^{-5(t-3)}(t-3)^2 & t \ge 3 \end{cases}, \qquad x_2(t) = 1 + t^3 e^{2-4t}$$

Giarrè - b) Dato il seguente sistema SISO lineare tempo invariante:

$$\dot{x}(t) = \begin{bmatrix}
-1 & 2 & 3 \\
0 & 2 & -1 \\
0 & 1 & 4
\end{bmatrix} x(t) + \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix}
1 & 1 & 0
\end{bmatrix} x(t)$$

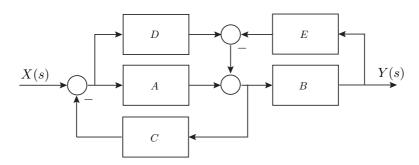
- 1. Ricavare la corrispondente funzione di trasferimento G(s).
- 2. Calcolare in maniera analitica l'evoluzione dell'uscita y(t) con un ingresso a gradino unitario e condizioni iniziali $x(0)=\begin{bmatrix}1\\0\\0\end{bmatrix}$

Biagiotti - b) Dato il sistema lineare tempo-invariante descritto dall'equazione differenziale

$$\ddot{y}(t) + 4\dot{y}(t) + 3y(t) = -6x(t)$$

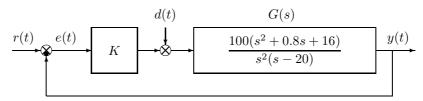
dove y(t) e x(t) rappresentano rispettivamente il segnale di uscita e quello di ingresso, calcolare analiticamente l'evoluzione y(t) a partire dalle condizioni iniziali y(0)=3 e $\dot{y}(0)=-4$ e considerando l'ingresso $x(t)=e^{-3t}$.

c) Dato il seguente schema a blocchi:

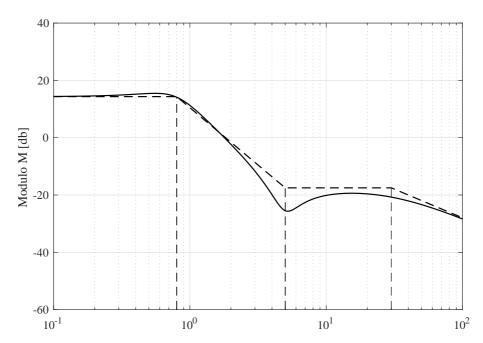


utilizzando la formula di Mason calcolare la funzione di trasferimento G(s) che lega l'ingresso X(s) all'uscita Y(s).

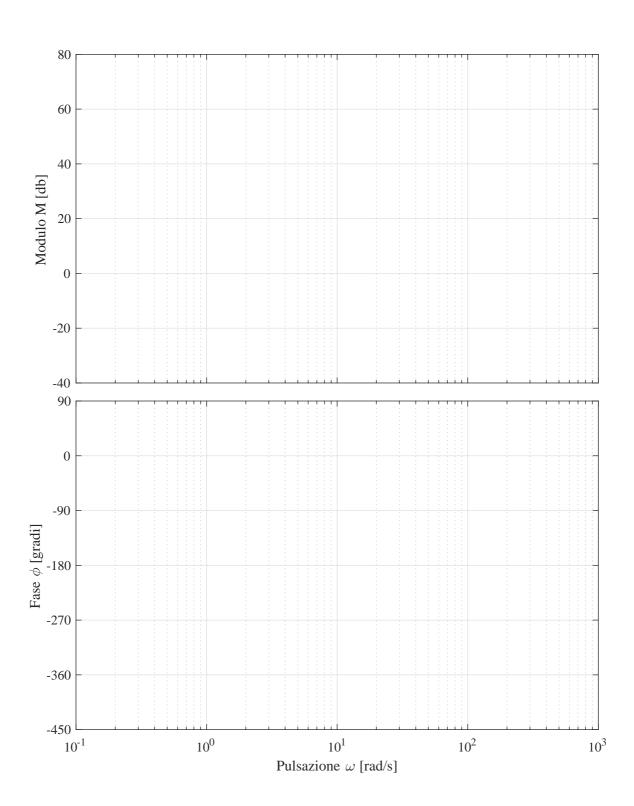
d) Sia data la funzione di trasferimento $G(s) = \frac{1 + 2.4s}{(s + 0.4)(s^2 + 3s + 25)(1 + 0.01s)}$ Disegnare l'andamento qualitativo della risposta y(t) a un gradino in ingresso di ampiezza 20, x(t) = 20. Calcolare il valore a regime y_{∞} dell'uscita y(t) del sistema, stimare qualitativamente il tempo di assestamento T_a del sistema e il periodo T_{ω} dell'eventuale oscillazione smorzata. e) Sia dato il seguente sistema retroazionato:



- e.1) Determinare per quali valori del parametro K il sistema retroazionato è asintoticamente stabile.
- e.2) Posto K=10, calcolare l'errore a regime e_{∞} quando sul sistema retroazionato agiscono contemporaneamente il segnale di riferimento r(t)=20+2t e il disturbo $d(t)=2\sin(5t)$
- e.3) Tracciare (nello schema fornito in allegato) i diagrammi asintotici di Bode delle ampiezze e delle fasi della funzione G(s).
- **Biagiotti** e.4) Tracciare qualitativamente il luogo delle radici del sistema retroazionato per valori postivi del parametro K. Determinare esattamente gli asintoti, il centro degli asintoti, le intersezioni con l'asse immaginario e i corrispondenti valori del guadagno K.
 - Giarré e.4) Disegnare qualitativamente il diagramma di Nyquist della funzione di risposta armonica $G(j\omega)$ per valori positivi della pulsazione. Calcolare esattamente la posizione σ_0 di un eventuale asintoto, le eventuali intersezioni con l'asse reale e i corrispondenti valori delle pulsazioni.
 - f) Si faccia riferimento al diagramma di Bode delle ampiezze della funzione a fase minima G(s) mostrato in figura.



Si richiede di ricavare l'espressione analitica della funzione G(s).



Prof. Biagiotti 🗆

Controlli Automatici - Parte A

Ingegneria Meccanica e Ingegneria del Veicolo

Compito del 1 febbraio 2018 - Quiz

Per ciascuno dei seguenti quesiti (si considerino solo le domande numerate normalmente o che recano il nome del docente con cui si è seguito il corso), segnare con una crocetta le risposte che si ritengono corrette. Alcuni quesiti possono avere più risposte corrette.

I quiz si ritengono superati se vengono individuate almeno metà delle risposte esatte (punti 5.5 su 11), diversamente il compito verrà ritenuto insufficiente a prescindere dal risultato della seconda prova.

1. Quali dei seguenti sistemi sono asintoticamente stabili?

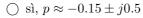
$$\bigcirc G(s) = \frac{s+2}{s(s+3)(2s+1)}$$

$$\bigotimes G(s) = \frac{s+2}{(s+1)^2(s+3)}$$

$$\bigcirc G(s) = \frac{s-2}{(3s+1)(s^2+4)}$$

$$\bigotimes G(s) = \frac{s+2}{(3s+1)(s^2+s+4)}$$

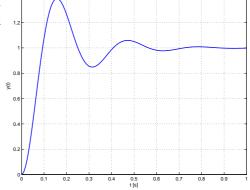
2. A partire dalla risposta al gradino unitario mostrata in figura è possibile stimare la posizione dei poli dominanti del sistema?



$$\bigcirc$$
 sì, $p \approx -1.5 \pm j2$

$$\bigotimes$$
 sì, $p \approx -6 \pm j20$

 \bigcirc no



3. L'evoluzione libera del sistema $2\dot{y}(t) + by(t) = 0$ partendo dalla condizione iniziale y(0) = 3 è:

$$y(t) = 3(1 - e^{-\frac{2}{b}t})$$

$$() y(t) = 3e^{-\frac{2}{b}t}$$

$$y(t) = \frac{3}{2}e^{-\frac{b}{2}t}$$

$$(x)$$
 $y(t) = 3e^{-\frac{b}{2}t}$

4. Il valore iniziale della risposta all'impulso g(t) del sistema $G(s) = \frac{5s+1}{s^2+3s+4}$ vale:

- \bigotimes 5
- $\bigcirc 1/4$
- \bigcirc 0
- $\bigcirc \propto$

5. La funzione di trasferimento $G(s)=\frac{Y(s)}{X(s)}$ corrispondente all'equazione differenziale $2\ddot{y}+4\dot{y}+y=\ddot{x}+5\dot{x}+3x$ è:

$$\bigcirc G(s) = \frac{s^2 + 5s + 3}{2s^3 + 4s^2 + s}$$

$$\bigotimes G(s) = \frac{s^2 + 5s + 3}{2s^3 + 4s + 1}$$

$$\bigcirc G(s) = \frac{2s^3 + 4s + 1}{s^2 + 5s + 3}$$

6. Se al sistema $y(t) + \dot{y}(t) = 2u(t)$ si applica l' ingresso $u(t) = \sin(t)$, a regime l'uscita sarà:
$\bigcirc y(t) = \frac{1}{\sqrt{2}}\sin(t + 45^{\circ})$
$\bigotimes y(t) = \frac{2}{\sqrt{2}}\sin(t - 45^{\circ})$
$\bigcirc y(t) = \frac{2}{\sqrt{2}}\sin(t+45^{\circ})$
$\bigcirc y(t) = \frac{1}{\sqrt{2}}\sin(t - 45^{\circ})$
7. Se la funzione d'anello $L(s)$ di un sistema retroazionato presenta un polo nell'origine:
⊗ l'errore a regime per ingresso a gradino è nullo
O l'errore a regime per ingresso a rampa è nullo
\bigotimes l'errore a regime per ingresso a rampa è diverso da zero e costante
\bigotimes l'errore a regime per ingresso a parabola è infinito
8. In un sistema del secondo ordine a poli complessi coniugati e privo di zeri il picco di risonanza M_R rimane costante al variare della posizione dei poli nel piano complesso:
 ⊗ su due semirette uscenti dall'origine ○ su di una circonferenza con centro nell'origine ○ su di una circonferenza con centro in -1 ○ su di una retta parallela all'asse immaginario
9. Considerando l'ingresso di equilibrio $\bar{u}=1$, indicare queli dei seguenti risultano stati di equilibrio per il sistema non lineare $ \begin{cases} &\dot{x}_1(t)=x_1^3(t)+u(t)\\ &\dot{x}_2(t)=x_1(t)+x_2^2(t) \end{cases} $
10. Il diagramma di Bode delle ampiezze di un sistema $G(s)$ di tipo 2 e avente grado relativo 3 presenta:
\otimes pendenza di $-40 \mathrm{dB/dec}$ per $\omega \to 0$ e pendenza di $-60 \mathrm{dB/dec}$ per $\omega \to \infty$ \bigcirc pendenza di $-60 \mathrm{dB/dec}$ per $\omega \to 0$ e pendenza di $-40 \mathrm{dB/dec}$ per $\omega \to \infty$ \bigcirc pendenza di $-20 \mathrm{dB/dec}$ per $\omega \to 0$ e pendenza di $-30 \mathrm{dB/dec}$ per $\omega \to \infty$ \bigcirc pendenza di $+40 \mathrm{dB/dec}$ per $\omega \to 0$ e pendenza di $+60 \mathrm{dB/dec}$ per $\omega \to \infty$

Ho seguito il corso con

Prof. Giarré □

Prof. Biagiotti 🗆

Controlli Automatici - Parte A

Ingegneria Meccanica e Ingegneria del Veicolo

Compito del 1 febbraio 2018 - Esercizi

Rispondere in maniera analitica ai seguenti quesiti (gli studenti dovranno rispondere ai quesiti contrassegnati solo con lettere o col nome del docente di cui hanno seguito il corso più una lettera). I problemi e le domande a risposta aperta si ritengono superati se vengono conseguiti almeno metà dei punti totali (11 su 22), diversamente il compito verrà ritenuto insufficiente a prescindere dal risultato della prima prova.

a) Determinare la trasformata di Laplace $X_i(s)$ dei seguenti segnali temporali $x_i(t)$:

$$x_1(t) = \begin{cases} 0 & t < 3 \\ e^{-5(t-3)}(t-3)^2 & t \ge 3 \end{cases}, \qquad x_2(t) = 1 + t^3 e^{2-4t}$$

SOLUZIONE:

$$X_1(s) = \frac{2}{(s+5)^3}e^{-3s},$$
 $X_2(s) = \frac{1}{s} + \frac{6e^2}{(s+4)^4},$

Giarrè - b) Dato il seguente sistema SISO lineare tempo invariante:

$$\dot{x}(t) = \begin{bmatrix}
-1 & 2 & 3 \\
0 & 2 & -1 \\
0 & 1 & 4
\end{bmatrix} x(t) + \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix}
1 & 1 & 0
\end{bmatrix} x(t)$$

- Ricavare la corrispondente funzione di trasferimento G(s).
- Calcolare in maniera analitica l'evoluzione dell'uscita y(t) con un ingresso a gradino unitario e condizioni iniziali $x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

SOLUZIONE:

La funzione di trasferimento si ottiene dalla formula $G(s) = C(sI-A)^{-1}B = C\frac{Adj(sI-A)}{det(sI-A)}B$. Poiché $det(sI-A) = (s+1)(s-3)^2$, si ottiene $G(s) = \frac{1}{s+1}$. La risposta nell'uscita si ottiene antitrasformando da $Y(s) = C(sI-A)^{-1}B\frac{1}{s} + C(sI-A)^{-1}x(0) = \frac{1}{s+1}(\frac{1}{s}+1) = \frac{1}{s}$ che fornisce y(t) = 1.

Biagiotti - b) Dato il sistema lineare tempo-invariante descritto dall'equazione differenziale

$$\ddot{y}(t) + 4\dot{y}(t) + 3y(t) = -6x(t)$$

dove y(t) e x(t) rappresentano rispettivamente il segnale di uscita e quello di ingresso, calcolare analiticamente l'evoluzione y(t) a partire dalle condizioni iniziali y(0) = 3 e $\dot{y}(0) = -4$ e considerando l'ingresso $x(t) = e^{-3t}.$

SOLUZIONE:

Trasformando con Laplace l'equazione differenziale si ottiene

$$s^{2}Y(s) - sy(0) - \dot{y}(0) + 4(sY(s) - y(0)) + 3Y(s) = -6X(s)$$

e quindi sostituendo il valore delle condizioni iniziali e la trasformate dell'ingresso $X(s)=\frac{1}{s+3}$ si ottiene

$$Y(s) = \frac{3s^2 + 17s + 18}{(s+3)^2(s+1)}.$$

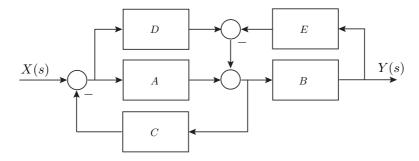
Scomponendo Y(s) in fratti semplici si ha

$$Y(s) = \frac{2}{s+3} + \frac{3}{(s+3)^2} + \frac{1}{s+1}$$

che antitrasformata diventa

$$y(t) = 2e^{-3t} + 3te^{-3t} + e^{-t}$$

c) Dato il seguente schema a blocchi:



utilizzando la formula di Mason calcolare la funzione di trasferimento G(s) che lega l'ingresso X(s) all'uscita Y(s).

SOLUZIONE:

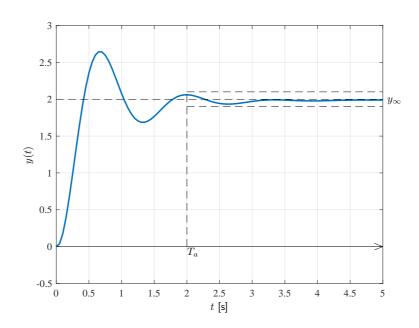
$$G(s) = \frac{Y(s)}{X(s)} = \frac{AB + DB}{1 + AC + DC + EB}$$

d) Sia data la funzione di trasferimento $G(s) = \frac{1 + 2.4s}{(s + 0.4)(s^2 + 3s + 25)(1 + 0.01s)}$

Disegnare l'andamento qualitativo della risposta y(t) a un gradino in ingresso di ampiezza 20, x(t)=20. Calcolare il valore a regime y_{∞} dell'uscita y(t) del sistema, stimare qualitativamente il tempo di assestamento T_a del sistema e il periodo T_{ω} dell'eventuale oscillazione smorzata.

SOLUZIONE:

Data la cencellazione tra il polo in -0.4 e lo zero in -0.4167, i poli dominanti del sistema sono i poli complessi coniugati $p_{1,2}=\sigma\pm j\omega=-3\pm j4.7697$, per cui la risposta al gradino avrà un andamento qualitativo di tipo oscillatorio smorzato, come mostrato in figura



Il valore a regime dell'uscita per un gradino in ingresso di ampiezza A=20 risulta

$$y_{\infty} = A G(0) = 20 \cdot (0.1) = 2$$

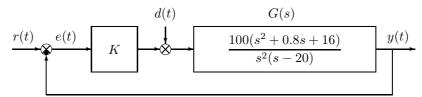
Il tempo di assestamento T_a è

$$T_a = \frac{3}{|\sigma|} = \frac{3}{1.5} = 2 \text{ s},$$

e il periodo dell'oscillazione

$$T_{\omega}=rac{2\pi}{\omega}=1.3173$$
 s.

e) Sia dato il seguente sistema retroazionato:



e.1) Determinare per quali valori del parametro K il sistema retroazionato è asintoticamente stabile.

SOLUZIONE:

L'equazione caratteristica del sistema retroazionato è

$$1 + \frac{100K(s^2 + 0.8s + 16)}{s^2(s - 20)} = 0 \qquad \to \qquad s^3 + (100K - 20)s^2 + 80Ks + 1600K = 0$$

La corrispondente tabella di Routh è la seguente

Quindi il sistema retroazionato è asintoticamente stabile per:

$$K > 0.4 = K^*$$

La pulsazione ω^* corrispondente al valore limite K^* è:

$$\omega^* = \sqrt{\frac{1600K^*}{100K^* - 20}} = \sqrt{32} = 5.657$$

e.2) Posto K=10, calcolare l'errore a regime e_{∞} quando sul sistema retroazionato agiscono contemporaneamente il segnale di riferimento r(t)=20+2t e il disturbo $d(t)=2\sin(5t)$

SOLUZIONE

Dato che il sistema è lineare e soggetto quindi alla sovrapposizione degli effetti, l'errore E(s), espresso mediante la trasformata di Laplace, risulterà:

$$E(s) = E_r(s) + E_d(s)$$

dove $E_r(s)$ è l'errore dovuto al riferimento mentre $E_d(s)$ è l'errore dovuto al disturbo. L'errore $e_r(\infty)$ dovuto al riferimento, composto da una costante e da una rampa, sarà nullo, essendo il sistema considerato di tipo 2, pertanto è necessario calcolare soltanto l'errore dovuto al disturbo d(t), che è dato da:

$$E_d(s) = F_d(s)D(s)$$

dove D(s) è la trasformata di Laplace di d(t) e $F_d(s)$ è la funzione di trasferimento tra D(s) e $E_d(s)$ che vale

$$F_d(s) = -\frac{G(s)}{1 + KG(s)} = \frac{-100s^2 - 80s - 1600}{s^3 + 980s^2 + 800s + 16000}$$

Essendo d(t) sinusoidale è possibile sfruttare il concetto di risposta armonica ottenendo $e_{d\infty}(t)=2\,|F_d(j5)|\sin(t+\arg\{F_d(j5)\})$ con $|F_d(j5)|=0.1054$ e $\arg\{F_d(j5)\}=180.5449^o=3.1511$ rad. In conclusione

$$e_{\infty} = e_{d_{\infty}} = 0.2109 \sin(5t + 3.1511).$$

e.3) Tracciare (nello schema fornito in allegato) i diagrammi asintotici di Bode delle ampiezze e delle fasi della funzione G(s).

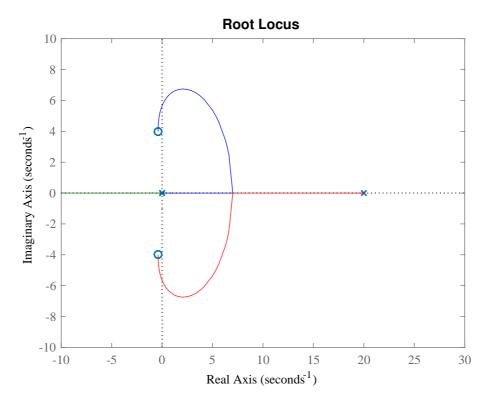
SOLUZIONE:

Vedi figura in fondo.

Biagiotti - e.4) Tracciare qualitativamente il luogo delle radici del sistema retroazionato per valori postivi del parametro K. Determinare esattamente gli asintoti, il centro degli asintoti, le intersezioni con l'asse immaginario e i corrispondenti valori del guadagno K.

SOLUZIONE:

Essendo 1 il grado relativo del sistema, esiste un solo asintoto che per K>0 è disposto lungo l'asse reale negativo (inutile quindi cercare il centro degli asintoti). Il luogo delle radici per K>0 è riportato nella seguente figura.

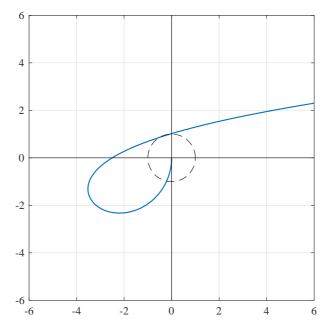


Dall'analisi svolta mediante il criterio di Routh, risulta che il luogo delle radici attraversa l'asse immaginario, passando dal semipiano sinistro a quello destro, in corrispondenza di $s^*=\pm j\omega^*=\pm j5.657$, per $K=K^*=0.4$.

Giarré - e.4) Disegnare qualitativamente il diagramma di Nyquist della funzione di risposta armonica $G(j\omega)$ per valori positivi della pulsazione. Calcolare esattamente la posizione σ_0 di un eventuale asintoto, le eventuali intersezioni con l'asse reale e i corrispondenti valori delle pulsazioni.

SOLUZIONE:

Il diagramma di Nyquist della funzione G(s) è riportato in figura.



La funzione approssimante per $\omega \to 0$ è

$$G_0(s) = \frac{-80}{s^2}$$

pertanto il diagramma parte all'infinito con fase iniziale $\varphi_0=0.$ La funzione approssimante per $\omega\to\infty$ è

$$G_{\infty}(s) = \frac{100}{s}$$

e quindi il diagramma giunge nell'origine con fase finale $\varphi_\infty=-\frac{\pi}{2}.$ Il parametro Δ_τ vale

$$\Delta_{\tau} = \frac{0.8}{16} + \frac{1}{20} = 0.1 > 0$$

pertanto il diagramma parte in anticipo rispetto alla fase iniziale φ_0 . Il sistema è di tipo 2 pertanto esiste alcun asintoto. Il parametro Δ_p vale

$$\Delta_p = -0.8 - 20 = -20.8 < 0$$

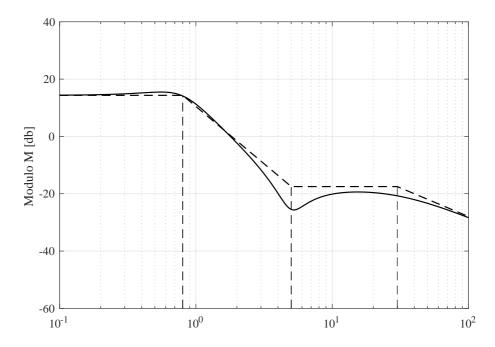
pertanto il diagramma arriva in ritardo rispetto alla fase finale $\varphi_{\infty}.$ Lo sfasamento complessivo è

$$\Delta \varphi = \pi + \frac{\pi}{2} = \frac{3}{2}\pi$$

Esiste almeno un'intersezioni con l'asse reale che, in virtù dell'analisi svolta con Routh al primo punto, risulta

$$\sigma = -1/K^* = -2.5.$$

f) Si faccia riferimento al diagramma di Bode delle ampiezze della funzione a fase minima G(s) mostrato in figura.



Si richiede di ricavare l'espressione analitica della funzione G(s).

SOLUZIONE:

$$G(s) = \frac{5.2083(\frac{1}{25}s^2 + \frac{2}{25}s + 1)}{(\frac{1}{30}s + 1)(\frac{1}{0.64}s^2 + \frac{0.8}{0.64}s + 1)} = \frac{4(s^2 + 2s + 25)}{(s + 30)(s^2 + 0.8s + 0.64)}$$

dove il valore $\mu \simeq 5$ si determina direttamente leggendo dal diagramma di Bode il valore del modulo in bassa frequenza della G(s)

$$|G(0)| \simeq 14 \text{ db} \simeq 5$$

Il segno sarà positivo poichè il sistema è a fase minima.

In corrispondenza di $\omega=0.8$ rad/s è presente una coppia di poli complessi coniugati (ovviamente stabili) caratterizzati da $\delta=0.5$ (come si evince dal fatto che diagramma asintotico e diagramma reale si intersecano proprio in corrispondenza del punto di rottura in 0.8).

In corrispondenza di $\omega=5$ rad/s è presente una coppia di zeri complessi coniugati stabili con $\zeta=0.2$. Infatti

$$\zeta = \frac{M_{\alpha_n}}{2} \simeq \frac{0.4}{2} = 0.2.$$

La distanza $M_{\alpha_n} \simeq -8~{\rm db} \simeq 0.4~{\rm si}$ legge dal diagramma di Bode dei moduli.

