Defining an Effective Wireless-Link Packet Scheduler through a Modular Architecture

Maurizio Casoni, Carlo Augusto Grazia, Paolo Valente

Department of Engineering *Enzo Ferrari* University of Modena and Reggio Emilia

Bressanone, 4 July 2013
PhD Summer School on Sensors and Sensors Networks

Talk overview

- Introduction
 - Problem
 - State of the Art
- 2 Proposed solution
 - Modular Architecture
 - Benefits
- Results
 - Test Environment
 - Reference Scenario
 - HFS packet scheduler
- 4 Conclusions
- Future Works

Problem

what

to provide features over a wireless link

- throughput boosting and energy saving
- QoS guarantees

why

radio channels are unreliable

- burst channel error (multipath, fading, interference, noise, ecc...)
- user mobility

where

packet scheduler

State of the Art

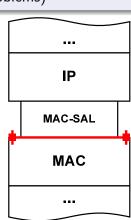
typical solution

single integrated scheduler

weaknesses

- merge both QoS guarantees and wireless link issues
 - QoS
 - → IP level
 - link issues → MAC/PHY level
- high-quality schedulers for wired links are unusable without modifications
- different technology or solution means to modify (again) the scheduler

Proposed solution 1/3


modular architecture

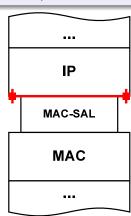
extends the network stack by adding a special **middle layer** on top of the MAC (decouple QoS and throughput problems)

bottom side

deals with the idiosyncrasies of the wireless link

- transmission reliability
- throughput boost using channel state information
- energy saving

Proposed solution 2/3


modular architecture

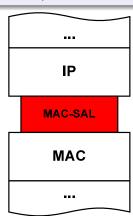
extends the network stack by adding a special **middle layer** on top of the MAC (decouple QoS and throughput problems)

top side

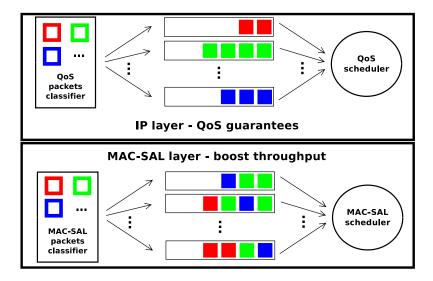
exports the abstraction of a link

- function link_ready()
- transparency for IP layer
- avoid cross-layering (IP-level)

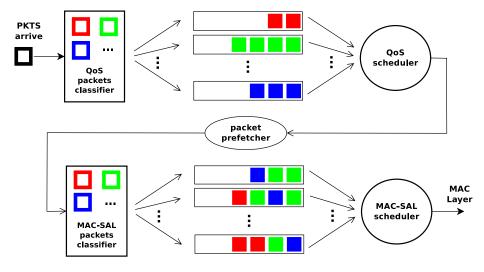
Proposed solution 3/3


modular architecture

extends the network stack by adding a special **middle layer** on top of the MAC (decouple QoS and throughput problems)


internally

MAC-SAL layer scheduler


- shared buffer with M virtual queues
- buffer size equal to Q packets

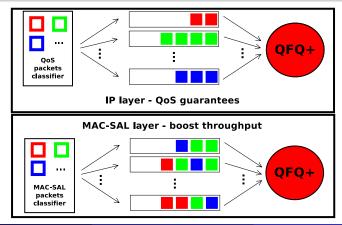
Architecture: double scheduler

Architecture: double scheduler

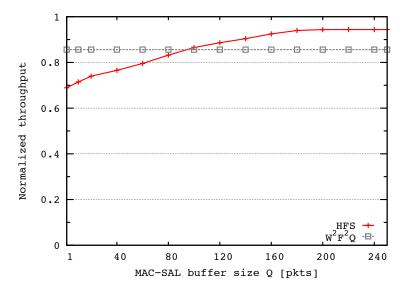
Benefits

- for QoS guarantees, existing packet schedulers for wired links can be used without modification
- 2 the same packet scheduler can be used
 - on heterogeneous wireless technologies
 - with different solutions to boost the throughput
 - only values/parameters of MAC-SAL scheduler change
- high throughput through *cross-layering*, while still preserving *flexibility*

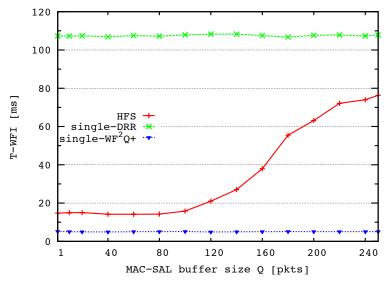
Test Environment

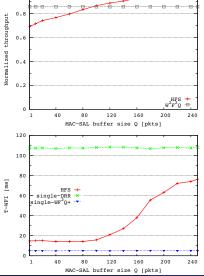

- UNIX-based open tool
- possibility to execute original scheduler alone or plugged into a double scheduler
- schedulers used:
 - WF²Q+: optimal service guarantees, O(logn) cost
 - DRR: O(n) deviation from optimal service, O(1) cost
 - QFQ+: quasi-optimal service guarantees, execution time close to DRR
 - W^2F^2Q : best integrated scheduler with O(n) cost
- easy run-time configuration
 - single/double scheduler mode
 - number of flows (QoS and/or MAC-SAL), weight distribution
 - Q buffer size
 - packets arrival pattern

Reference Scenario

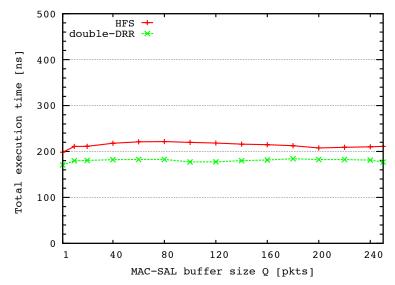

- 20 wireless stations
- link rate 54 Mb/s
- one MAC-SAL flow per wireless station
- MAC-SAL flow packet loss probability
 - ranging linearly from 10^0 to 10^{-1}
 - \bullet outsider values as 10^{-2} , 10^{-3} and 10^{-4}
 - static
- MAC-SAL flow weight distribution
 - analogical: $\phi_k = (1 P_{loss_k}) \cdot 1000$
- 100 QoS flows with different weights

High-throughput twin Fair Scheduler (HFS)


QoS layer: quasi-optimal service guarantees, cost close to DRR MAC-SAL layer: high throughput, quasi-optimal service guarantees, cost close to DRR


Throughput of HFS against W²F²Q

T-WFI of HFS against WF²Q+ and DRR


Tradeoff between QoS guarantees and throughput boosting

Tunable parameter:

- the higher is Q, the higher is the throughput
- the lower is Q, the higher is QoS guarantees

Execution time of HFS against DRR

Conclusions

Architecture

we defined a feasible, flexible and modular architecture which decouples QoS guarantees and link issues tasks

HFS

we implemented a new flexible, efficient and green packet scheduler for wireless links

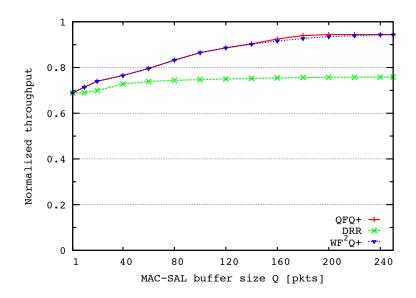
- throughput higher than W²F²Q
- T-WFI close to WF²Q+
- execution time close to DRR
- low energy consumption due to:
 - increase throughput \to more packets successfully transmitted per energy consumed \to less retransmission \to less power consumption
 - \bullet low execution time per packet processing \to less power consumption

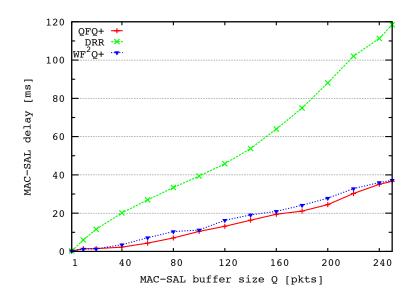

Future Works

- benefits for the transport layer (e.g. TCP goodput)
- dynamic weight distribution
- implement and integrate different channel models (e.g. WiMAX, 3G/LTE, Satellite)

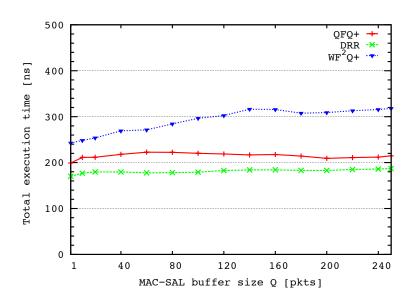
thank you for the attention

extra slides


Execution time of HFS against all


Guarantees

- analytical
 - Deficit Round Robin scheduler in MAC-SAL
 - weight per-flow proportional to the max possible throughput
 - worst-case bandwidth displacement
 - MAC-SAL additional delay
- sperimental
 - proof the effectiveness of the architecture through simulation
 - test environment UNIX-based
 - different schedulers tested
 - different parameters for a possible, realistic scenario


Normalized throughput for different MAC-SAL schedulers

Queueing delay for different MAC-SAL schedulers

Execution time for different MAC-SAL schedulers

